`

Android GSM驱动模块(rild)详细分析(一)基本架构及初始化

 
阅读更多
ndroid的RIL驱动模块, 在hardware/ril目录下,一共分rild,libril.so以及librefrence_ril.so三个部分,另有一radiooptions可供自动或手动调试使用。都依赖于include目录中ril.h头文件。目前cupcake分支上带的是gsm的支持,另有一cdma分支,这里分析的是gsm驱动。
GSM模块,由于Modem的历史原因,AP一直是通过基于串口的AT命令与BB交互。包括到了目前的一些edge或3g模块,或像omap这类ap,bp集成的芯片,已经使用了USB或其他等高速总线通信,但大多仍然使用模拟串口机制来使用AT命令。这里的RIL(Radio Interface Layer)层,主要也就是基于AT命令的操作,如发命令,response解析等。(gprs等传输会用到的MUX协议等在这里并没有包含,也暂不作介绍。)

以下是详细分析,因为篇幅原因,会以连载形式发布出来(大概3篇),本文主要涉及基本架构和初始化的内容:

首先介绍一下rild与libril.so以及librefrence_ril.so的关系:
1. rild:
仅实现一main函数作为整个ril层的入口点,负责完成初始化。
2. libril.so:
与rild结合相当紧密,是其共享库,编译时就已经建立了这一关系。组成部分为ril.cpp,ril_event.cpp。libril.so驻留在rild这一守护进程中,主要完成同上层通信的工作,接受ril请求并传递给librefrence_ril.so, 同时把来自librefrence_ril.so的反馈回传给调用进程。
3. librefrence_ril.so:
rild通过手动的dlopen方式加载,结合稍微松散,这也是因为librefrence.so主要负责跟Modem硬件通信的缘故。这样做更方便替换或修改以适配更多的Modem种类。它转换来自libril.so的请求为AT命令,同时监控Modem的反馈信息,并传递回libril.so。在初始化时, rild通过符号RIL_Init获取一组函数指针并以此与之建立联系。
4. radiooptions:
radiooptiongs通过获取启动参数, 利用socket与rild通信,可供调试时配置Modem参数。

接下来分析初始化流程:
主入口是rild.c中的main函数,主要完成三个任务:
1. 开启libril.so中的event机制, 在RIL_startEventLoop中,是最核心的由多路I/O驱动的消息循环。
2. 初始化librefrence_ril.so,也就是跟硬件或模拟硬件modem通信的部分(后面统一称硬件), 通过RIL_Init函数完成。
3. 通过RIL_Init获取一组函数指针RIL_RadioFunctions, 并通过RIL_register完成注册,并打开接受上层命令的socket通道。

首先看第一个任务:
也就是RIL_startEventLoop函数。RIL_startEventLoop在ril.cpp中实现, 它的主要目的是通过pthread_create(&s_tid_dispatch, &attr, eventLoop, NULL)建立一个dispatch线程,入口点在eventLoop. 而eventLoop中,会调ril_event.cpp中的ril_event_loop()函数,建立起消息(event)队列机制。
我们来仔细看看这一消息队列的机制,这些代码都在ril_event.cpp中。
void ril_event_init();
void ril_event_set(struct ril_event * ev, int fd, bool persist, ril_event_cb func, void * param);
void ril_event_add(struct ril_event * ev);
void ril_timer_add(struct ril_event * ev, struct timeval * tv);
void ril_event_del(struct ril_event * ev);
void ril_event_loop();

struct ril_event {
    struct ril_event *next;
    struct ril_event *prev;

    int fd;
    int index;
    bool persist;
    struct timeval timeout;
    ril_event_cb func;
    void *param;
};
每个ril_event结构,与一个fd句柄绑定(可以是文件,socket,管道等),并且带一个func指针去执行指定的操作。
具体流程是: ril_event_init完成后,通过ril_event_set来配置一新ril_event,并通过ril_event_add加入队列之中(实际通常用rilEventAddWakeup来添加),add会把队列里所有ril_event的fd,放入一个fd集合readFds中。这样ril_event_loop能通过一个多路复用I/O的机制(select)来等待这些fd, 如果任何一个fd有数据写入,则进入分析流程processTimeouts(),processReadReadies(&rfds, n),firePending()。 后文会详细分析这些流程。
另外我们可以看到, 在进入ril_event_loop之前, 已经挂入了一s_wakeupfd_event, 通过pipe的机制实现的, 这个event的目的是可以在一些情况下,能内部唤醒ril_event_loop的多路复用阻塞,比如一些带timeout的命令timeout到期的时候。
至此第一个任务分析完毕,这样便建立起了基于event队列的消息循环,稍后便可以接受上层发来的的请求了(上层请求的event对象建立,在第三个任务中)。

接下来看第二个任务:
这个任务的入口是RIL_Init, RIL_Init首先通过参数获取硬件接口的设备文件或模拟硬件接口的socket. 接下来便新开一个线程继续初始化, 即mainLoop。
mainLoop的主要任务是建立起与硬件的通信,然后通过read方法阻塞等待硬件的主动上报或响应。
在注册一些基础回调(timeout,readerclose)后,mainLoop首先打开硬件设备文件,建立起与硬件的通信,s_device_path和s_port是前面获取的设备路径参数,将其打开(两者可以同时打开并拥有各自的reader,这里也很容易添加双卡双待等支持)。
接下来通过at_open函数建立起这一设备文件上的reader等待循环,这也是通过新建一个线程完成, ret = pthread_create(&s_tid_reader, &attr, readerLoop, &attr),入口点readerLoop。
AT命令都是以/r/n或/n/r的换行符来作为分隔符的,所以readerLoop是line驱动的,除非出错,超时等,否则会读到一行完整的响应或主动上报,才会返回。这个循环跑起来以后,我们基本的AT响应机制已经建立了起来。它的具体分析,包括at_open中挂接的ATUnsolHandler, 我们都放到后面分析response的连载文章里去。
有了响应的机制(当然,能与硬件通信也已经可以发请求了),通过RIL_requestTimedCallback(initializeCallback, NULL, &TIMEVAL_0),跑到initializeCallback中,执行一些Modem的初始化命令,主要都是AT命令的方式。发AT命令的流程,我们放到后面分析request的连载文章里。这里可以看到,主要是一些参数配置,以及网络状态的检查等。
至此第二个任务分析完毕,硬件已经可以访问了。

最后是第三个任务:
第三个任务是由RIL_Init的返回值开始的,这是一个RIL_RadioFunctions结构的指针。
typedef struct {
    int version;        /* set to RIL_VERSION */
    RIL_RequestFunc onRequest;
    RIL_RadioStateRequest onStateRequest;
    RIL_Supports supports;
    RIL_Cancel onCancel;
    RIL_GetVersion getVersion;
} RIL_RadioFunctions;
其中最重要的是onRequest域,上层来的请求都由这个函数进行映射后转换成对应的AT命令发给硬件。
rild通过RIL_register注册这一指针。
RIL_register中要完成的另外一个任务,就是打开前面提到的跟上层通信的socket接口(s_fdListen是主接口,s_fdDebug供调试时使用)。
然后将这两个socket接口使用任务一中实现的机制进行注册(仅列出s_fdListen)
ril_event_set (&s_listen_event, s_fdListen, false,
                listenCallback, NULL);
rilEventAddWakeup (&s_listen_event);
这样将两个socket加到任务一中建立起来多路复用I/O的检查句柄集合中,一旦有上层来的(调试)请求,event机制便能响应处理了。
到这里启动流程已经分析完毕。
分享到:
评论

相关推荐

    Android_GSM驱动模块(rild)详细分析(全)

    ### Android GSM驱动模块(rild)详细分析 #### 1. 基本架构及初始化 Android的RIL(Radio Interface Layer)驱动模块是Android系统中非常重要的组成部分之一,主要用于处理移动设备与网络之间的通信功能。它位于...

    Android的RIL驱动模块

    在 RIL 驱动模块中,rild 是主入口点,负责完成初始化和通信。libril.so 是 rild 的共享库,负责与上层通信和处理请求。librefrence_ril.so 是负责与 Modem 硬件通信的模块,它将来自 libril.so 的请求转换为 AT ...

    ANDROID rild详细介绍

    通过对文档摘要和描述的分析,我们可以了解到构建 RIL 库所需的基本步骤,以及如何在 Android 系统中正确使用这些库。这对于开发者来说是非常宝贵的资源,尤其是在开发针对特定硬件平台的应用程序时。

    android P_MTK RILD.docx

    RILD的启动和初始化过程包括加载必要的库、初始化串口通信、设置事件回调函数等。在启动时,RILD会监听来自RILJ的请求,同时准备好接收Modem的响应和指示。RILJ与RILD之间的事件分发和处理流程涉及对AT命令的封装、...

    Android的RIL驱动模块启动流程.txt

    本文将深入探讨Android RIL驱动模块的启动流程,通过分析其内部结构与工作原理,帮助读者更好地理解这一核心机制。 #### 二、RIL概述 RIL是Android系统中的一个关键组件,用于管理手机的无线电通信功能。它位于...

    android O rild详解

    2. **IRadio 初始化**:在初始化过程中,会创建 IRadio 接口实例。对于双 SIM 卡设备,会为每张 SIM 卡创建一个 IRadio 实例。通过调用 `setResponseFunctions` 方法将 `IRadioResponse` 和 `IRadioIndication` 传递...

    Android RIL GSM底层驱动 实现打电话发短信功能详解

    1. 初始化:Android系统启动时,RIL服务会加载GSM驱动,通过配置文件(如rild.rc)指定驱动路径。RILD会与GSM驱动建立连接,进行基本的握手和身份验证。 2. AT命令传输:RILD通过串行端口或Socket与GSM驱动通信,...

    android初始化流程

    Android初始化流程是操作系统启动后进行的一系列核心服务与系统组件的加载和设置过程,这个流程对系统的稳定性和功能完整性至关重要。下面将详细阐述Android初始化的关键步骤、涉及的服务以及相关组件的作用。 1. *...

    Android的RIL驱动模块启动流程

    Android的RIL(Radio ...上述流程体现了Android RIL驱动模块启动的基本架构和初始化机制,为无线通信模块的启动和运行奠定了基础。理解这个流程有助于深入研究Android系统中无线电通信的工作原理和调试通信模块。

    Android Telephony架构分析

    本文将详细介绍Android电信系统的架构,范围从应用层API一直到Linux操作系统中的无线模块驱动。值得注意的是,本文不会涉及底层的蜂窝基带硬件细节。 #### 二、架构概览 典型的移动电话软件平台(如LiMO、Qtopia等...

    RILD的启动流程图简介

    - **主循环**:完成以上所有初始化步骤后,RILD将进入一个无限循环状态,等待接收并处理来自`ril-java`或基带处理器的各种通信请求。 #### 四、总结 RILD作为Android系统中通信模块的核心组件之一,其启动流程涉及...

    ril流程分析

    本文将对RIL流程进行详细分析,涵盖RIL初始化、工作流程图、libril.so、librefrence_ril.so、rild、radiooptions等方面的知识点。 一、RIL初始化 RIL初始化是整个RIL流程的开始。在rild.c文件中,main函数是RIL层...

    Android初始化流程简要分析.do

    以下是对Android初始化流程的详细分析: 1. **INIT 进程** 在Android系统启动时,首先由Linux内核加载并执行init进程,这是系统的第一个用户空间进程,其职责是初始化系统环境和启动其他必要的服务。 2. **MAIN ...

    Android中获取GSM、CDMA、Wifi信号强度

    Android 中获取 GSM、CDMA、Wifi 信号强度是一个非常重要的功能,特别是在实现某些特定的应用场景时。例如,在某些地区,GSM 信号强度可能会很弱,而 CDMA 信号强度可能会很强,而 Wifi 信号强度又可能会受到环境的...

    Android底层架构研究

    通过分析AndroidApplication,可以了解应用程序如何初始化、如何响应系统事件以及如何与其他组件交互。 ### **21. Android应用框架之Activity** Activity是Android应用程序中最基本的组件之一,它代表了一个屏幕上...

    [经典文档]Android核心分析

    核心分析之十二 ----- Android GWES窗口管理之基本架构原理 核心分析之十三 ----- Android GWES之Android窗口管理 核心分析之十四 ----- Android GWES之输入系统 核心分析之十五 ----- Android 输入系统之输入路径...

    rild Socket 初始化

    rild socket 主用用于接收从RIL.java 中传递过来的数据命令,同时rild的反馈信息也通过该socket返回给RIL.java

    [Hasen图示系列]android中rild机制

    Rild:Radio Interface Layout Daemon , 用于智能手机的通信管理和控 制的后台进程,所有和手机通信相关的功 能,例如打电话、手法短信、 GPRS等都 需要Rild的参与。

Global site tag (gtag.js) - Google Analytics