- 浏览: 3566321 次
- 性别:
- 来自: 杭州
文章分类
- 全部博客 (1491)
- Hibernate (28)
- spring (37)
- struts2 (19)
- jsp (12)
- servlet (2)
- mysql (24)
- tomcat (3)
- weblogic (1)
- ajax (36)
- jquery (47)
- html (43)
- JS (32)
- ibatis (0)
- DWR (3)
- EXTJS (43)
- Linux (15)
- Maven (3)
- python (8)
- 其他 (8)
- JAVASE (6)
- java javase string (0)
- JAVA 语法 (3)
- juddiv3 (15)
- Mule (1)
- jquery easyui (2)
- mule esb (1)
- java (644)
- log4j (4)
- weka (12)
- android (257)
- web services (4)
- PHP (1)
- 算法 (18)
- 数据结构 算法 (7)
- 数据挖掘 (4)
- 期刊 (6)
- 面试 (5)
- C++ (1)
- 论文 (10)
- 工作 (1)
- 数据结构 (6)
- JAVA配置 (1)
- JAVA垃圾回收 (2)
- SVM (13)
- web st (1)
- jvm (7)
- weka libsvm (1)
- weka屈伟 (1)
- job (2)
- 排序 算法 面试 (3)
- spss (2)
- 搜索引擎 (6)
- java 爬虫 (6)
- 分布式 (1)
- data ming (1)
- eclipse (6)
- 正则表达式 (1)
- 分词器 (2)
- 张孝祥 (1)
- solr (3)
- nutch (1)
- 爬虫 (4)
- lucene (3)
- 狗日的腾讯 (1)
- 我的收藏网址 (13)
- 网络 (1)
- java 数据结构 (22)
- ACM (7)
- jboss (0)
- 大纸 (10)
- maven2 (0)
- elipse (0)
- SVN使用 (2)
- office (1)
- .net (14)
- extjs4 (2)
- zhaopin (0)
- C (2)
- spring mvc (5)
- JPA (9)
- iphone (3)
- css (3)
- 前端框架 (2)
- jui (1)
- dwz (1)
- joomla (1)
- im (1)
- web (2)
- 1 (0)
- 移动UI (1)
- java (1)
- jsoup (1)
- 管理模板 (2)
- javajava (1)
- kali (7)
- 单片机 (1)
- 嵌入式 (1)
- mybatis (2)
- layui (7)
- asp (12)
- asp.net (1)
- sql (1)
- c# (4)
- andorid (1)
- 地价 (1)
- yihuo (1)
- oracle (1)
最新评论
-
endual:
https://blog.csdn.net/chenxbxh2 ...
IE6 bug -
ice86rain:
你好,ES跑起来了吗?我的在tomcat启动时卡在这里Hibe ...
ES架构技术介绍 -
TopLongMan:
...
java public ,protect,friendly,private的方法权限(转) -
贝塔ZQ:
java实现操作word中的表格内容,用插件实现的话,可以试试 ...
java 读取 doc poi读取word中的表格(转) -
ysj570440569:
Maven多模块spring + springMVC + JP ...
Spring+SpringMVC+JPA
插入排序:
package org.rut.util.algorithm.support;
import org.rut.util.algorithm.SortUtil;
/**
* @author treeroot
* @since 2006-2-2
* @version 1.0
*/
public class InsertSort implements SortUtil.Sort{
/* (non-Javadoc)
* @see org.rut.util.algorithm.SortUtil.Sort#sort(int[])
*/
public void sort(int[] data) {
int temp;
for(int i=1;i<data.length;i++){
for(int j=i;(j>0)&&(data[j]<data[j-1]);j--){
SortUtil.swap(data,j,j-1);
}
}
}
}
冒泡排序:
package org.rut.util.algorithm.support;
import org.rut.util.algorithm.SortUtil;
/**
* @author treeroot
* @since 2006-2-2
* @version 1.0
*/
public class BubbleSort implements SortUtil.Sort{
/* (non-Javadoc)
* @see org.rut.util.algorithm.SortUtil.Sort#sort(int[])
*/
public void sort(int[] data) {
int temp;
for(int i=0;i<data.length;i++){
for(int j=data.length-1;j>i;j--){
if(data[j]<data[j-1]){
SortUtil.swap(data,j,j-1);
}
}
}
}
}
选择排序:
package org.rut.util.algorithm.support;
import org.rut.util.algorithm.SortUtil;
/**
* @author treeroot
* @since 2006-2-2
* @version 1.0
*/
public class SelectionSort implements SortUtil.Sort {
/*
* (non-Javadoc)
*
* @see org.rut.util.algorithm.SortUtil.Sort#sort(int[])
*/
public void sort(int[] data) {
int temp;
for (int i = 0; i < data.length; i++) {
int lowIndex = i;
for (int j = data.length - 1; j > i; j--) {
if (data[j] < data[lowIndex]) {
lowIndex = j;
}
}
SortUtil.swap(data,i,lowIndex);
}
}
}
Shell排序:
package org.rut.util.algorithm.support;
import org.rut.util.algorithm.SortUtil;
/**
* @author treeroot
* @since 2006-2-2
* @version 1.0
*/
public class ShellSort implements SortUtil.Sort{
/* (non-Javadoc)
* @see org.rut.util.algorithm.SortUtil.Sort#sort(int[])
*/
public void sort(int[] data) {
for(int i=data.length/2;i>2;i/=2){
for(int j=0;j<i;j++){
insertSort(data,j,i);
}
}
insertSort(data,0,1);
}
/**
* @param data
* @param j
* @param i
*/
private void insertSort(int[] data, int start, int inc) {
int temp;
for(int i=start+inc;i<data.length;i+=inc){
for(int j=i;(j>=inc)&&(data[j]<data[j-inc]);j-=inc){
SortUtil.swap(data,j,j-inc);
}
}
}
}
快速排序:
package org.rut.util.algorithm.support;
import org.rut.util.algorithm.SortUtil;
/**
* @author treeroot
* @since 2006-2-2
* @version 1.0
*/
public class QuickSort implements SortUtil.Sort{
/* (non-Javadoc)
* @see org.rut.util.algorithm.SortUtil.Sort#sort(int[])
*/
public void sort(int[] data) {
quickSort(data,0,data.length-1);
}
private void quickSort(int[] data,int i,int j){
int pivotIndex=(i+j)/2;
//swap
SortUtil.swap(data,pivotIndex,j);
int k=partition(data,i-1,j,data[j]);
SortUtil.swap(data,k,j);
if((k-i)>1) quickSort(data,i,k-1);
if((j-k)>1) quickSort(data,k+1,j);
}
/**
* @param data
* @param i
* @param j
* @return
*/
private int partition(int[] data, int l, int r,int pivot) {
do{
while(data[++l]<pivot);
while((r!=0)&&data[--r]>pivot);
SortUtil.swap(data,l,r);
}
while(l<r);
SortUtil.swap(data,l,r);
return l;
}
}
改进后的快速排序:
package org.rut.util.algorithm.support;
import org.rut.util.algorithm.SortUtil;
/**
* @author treeroot
* @since 2006-2-2
* @version 1.0
*/
public class ImprovedQuickSort implements SortUtil.Sort {
private static int MAX_STACK_SIZE=4096;
private static int THRESHOLD=10;
/* (non-Javadoc)
* @see org.rut.util.algorithm.SortUtil.Sort#sort(int[])
*/
public void sort(int[] data) {
int[] stack=new int[MAX_STACK_SIZE];
int top=-1;
int pivot;
int pivotIndex,l,r;
stack[++top]=0;
stack[++top]=data.length-1;
while(top>0){
int j=stack[top--];
int i=stack[top--];
pivotIndex=(i+j)/2;
pivot=data[pivotIndex];
SortUtil.swap(data,pivotIndex,j);
//partition
l=i-1;
r=j;
do{
while(data[++l]<pivot);
while((r!=0)&&(data[--r]>pivot));
SortUtil.swap(data,l,r);
}
while(l<r);
SortUtil.swap(data,l,r);
SortUtil.swap(data,l,j);
if((l-i)>THRESHOLD){
stack[++top]=i;
stack[++top]=l-1;
}
if((j-l)>THRESHOLD){
stack[++top]=l+1;
stack[++top]=j;
}
}
//new InsertSort().sort(data);
insertSort(data);
}
/**
* @param data
*/
private void insertSort(int[] data) {
int temp;
for(int i=1;i<data.length;i++){
for(int j=i;(j>0)&&(data[j]<data[j-1]);j--){
SortUtil.swap(data,j,j-1);
}
}
}
}
归并排序:
package org.rut.util.algorithm.support;
import org.rut.util.algorithm.SortUtil;
/**
* @author treeroot
* @since 2006-2-2
* @version 1.0
*/
public class MergeSort implements SortUtil.Sort{
/* (non-Javadoc)
* @see org.rut.util.algorithm.SortUtil.Sort#sort(int[])
*/
public void sort(int[] data) {
int[] temp=new int[data.length];
mergeSort(data,temp,0,data.length-1);
}
private void mergeSort(int[] data,int[] temp,int l,int r){
int mid=(l+r)/2;
if(l==r) return ;
mergeSort(data,temp,l,mid);
mergeSort(data,temp,mid+1,r);
for(int i=l;i<=r;i++){
temp[i]=data[i];
}
int i1=l;
int i2=mid+1;
for(int cur=l;cur<=r;cur++){
if(i1==mid+1)
data[cur]=temp[i2++];
else if(i2>r)
data[cur]=temp[i1++];
else if(temp[i1]<temp[i2])
data[cur]=temp[i1++];
else
data[cur]=temp[i2++];
}
}
}
改进后的归并排序:
package org.rut.util.algorithm.support;
import org.rut.util.algorithm.SortUtil;
/**
* @author treeroot
* @since 2006-2-2
* @version 1.0
*/
public class ImprovedMergeSort implements SortUtil.Sort {
private static final int THRESHOLD = 10;
/*
* (non-Javadoc)
*
* @see org.rut.util.algorithm.SortUtil.Sort#sort(int[])
*/
public void sort(int[] data) {
int[] temp=new int[data.length];
mergeSort(data,temp,0,data.length-1);
}
private void mergeSort(int[] data, int[] temp, int l, int r) {
int i, j, k;
int mid = (l + r) / 2;
if (l == r)
return;
if ((mid - l) >= THRESHOLD)
mergeSort(data, temp, l, mid);
else
insertSort(data, l, mid - l + 1);
if ((r - mid) > THRESHOLD)
mergeSort(data, temp, mid + 1, r);
else
insertSort(data, mid + 1, r - mid);
for (i = l; i <= mid; i++) {
temp[i] = data[i];
}
for (j = 1; j <= r - mid; j++) {
temp[r - j + 1] = data[j + mid];
}
int a = temp[l];
int b = temp[r];
for (i = l, j = r, k = l; k <= r; k++) {
if (a < b) {
data[k] = temp[i++];
a = temp[i];
} else {
data[k] = temp[j--];
b = temp[j];
}
}
}
/**
* @param data
* @param l
* @param i
*/
private void insertSort(int[] data, int start, int len) {
for(int i=start+1;i<start+len;i++){
for(int j=i;(j>start) && data[j]<data[j-1];j--){
SortUtil.swap(data,j,j-1);
}
}
}
}
堆排序:
package org.rut.util.algorithm.support;
import org.rut.util.algorithm.SortUtil;
/**
* @author treeroot
* @since 2006-2-2
* @version 1.0
*/
public class HeapSort implements SortUtil.Sort{
/* (non-Javadoc)
* @see org.rut.util.algorithm.SortUtil.Sort#sort(int[])
*/
public void sort(int[] data) {
MaxHeap h=new MaxHeap();
h.init(data);
for(int i=0;i<data.length;i++)
h.remove();
System.arraycopy(h.queue,1,data,0,data.length);
}
private static class MaxHeap{
void init(int[] data){
this.queue=new int[data.length+1];
for(int i=0;i<data.length;i++){
queue[++size]=data[i];
fixUp(size);
}
}
private int size=0;
private int[] queue;
public int get() {
return queue[1];
}
public void remove() {
SortUtil.swap(queue,1,size--);
fixDown(1);
}
//fixdown
private void fixDown(int k) {
int j;
while ((j = k << 1) <= size) {
if (j < size && queue[j]<queue[j+1])
j++;
if (queue[k]>queue[j]) //不用交换
break;
SortUtil.swap(queue,j,k);
k = j;
}
}
private void fixUp(int k) {
while (k > 1) {
int j = k >> 1;
if (queue[j]>queue[k])
break;
SortUtil.swap(queue,j,k);
k = j;
}
}
}
}
SortUtil:
package org.rut.util.algorithm;
import org.rut.util.algorithm.support.BubbleSort;
import org.rut.util.algorithm.support.HeapSort;
import org.rut.util.algorithm.support.ImprovedMergeSort;
import org.rut.util.algorithm.support.ImprovedQuickSort;
import org.rut.util.algorithm.support.InsertSort;
import org.rut.util.algorithm.support.MergeSort;
import org.rut.util.algorithm.support.QuickSort;
import org.rut.util.algorithm.support.SelectionSort;
import org.rut.util.algorithm.support.ShellSort;
/**
* @author treeroot
* @since 2006-2-2
* @version 1.0
*/
public class SortUtil {
public final static int INSERT = 1;
public final static int BUBBLE = 2;
public final static int SELECTION = 3;
public final static int SHELL = 4;
public final static int QUICK = 5;
public final static int IMPROVED_QUICK = 6;
public final static int MERGE = 7;
public final static int IMPROVED_MERGE = 8;
public final static int HEAP = 9;
public static void sort(int[] data) {
sort(data, IMPROVED_QUICK);
}
private static String[] name={
"insert","bubble","selection","shell","quick","improved_quick","merge","improved_merge","heap"
};
private static Sort[] impl=new Sort[]{
new InsertSort(),
new BubbleSort(),
new SelectionSort(),
new ShellSort(),
new QuickSort(),
new ImprovedQuickSort(),
new MergeSort(),
new ImprovedMergeSort(),
new HeapSort()
};
public static String toString(int algorithm){
return name[algorithm-1];
}
public static void sort(int[] data, int algorithm) {
impl[algorithm-1].sort(data);
}
public static interface Sort {
public void sort(int[] data);
}
public static void swap(int[] data, int i, int j) {
int temp = data[i];
data[i] = data[j];
data[j] = temp;
}
}
发表评论
-
java 回溯法求解 8皇后问题
2012-02-14 07:51 4495package endual; public cl ... -
算法设计与分析_回溯法分析
2012-02-12 09:53 2393回溯法 有通用的解题 ... -
经典而简单的贪心算法
2012-02-10 18:23 2034package endual; public cl ... -
贪心算法的一些感悟
2012-02-10 15:42 2417每一个贪心算法的背后 ... -
计算时间和空间复杂度
2012-02-02 13:37 1759计算时间和空间复杂度 分类: C++学习 2 ... -
java 实现二叉树
2012-01-25 21:13 1469在计算机科学中,树是一种非常重要的数据结构,而且有非常广泛的应 ... -
java实现队列
2012-01-25 21:10 1567队列是一种重要的数据结构,在排队论和算法设计中有很重要的应用, ... -
java 栈(面试够了的)
2012-01-25 21:07 1574package endual;public class Sta ... -
java 栈的实现
2012-01-25 20:38 1419栈可以说是一种特殊的链表,它的主要特点是先进后出,是一种重要的 ... -
求解算法的时间复杂度的具体步骤
2012-01-25 19:14 1662求解算法的时间复杂度 ... -
常用的排序算法的时间复杂度和空间复杂度
2012-01-24 23:03 2487常用的排序算法的时间复杂度和空间复杂度 分类: 笔试面试题 ... -
时间复杂度和空间复杂度
2012-01-24 22:18 1983同一问题可用不同 ... -
时间复杂度和空间复杂度
2012-01-24 22:17 2000时间复杂度和空间复杂度 分类: Algorithm 2008 ... -
海量数据算法笔试题
2012-01-21 01:58 1594海量数据算法笔 ... -
[转]大数据量,海量数据 处理方法总结
2012-01-21 01:57 1224[转]大数据量,海量数据 处理方法总 ... -
时间复杂度的计算
2012-01-17 22:54 1365算法复杂度是在《数据 ... -
算法分类(按照效率降序排列)
2011-09-13 21:09 16721.常数级、 2.对数级 3.次线性级 4.线性级 5 ...
相关推荐
`Algorithm.java`文件可能包含了这些排序算法的Java实现代码,而`常见排序算法的实现与性能比较.doc`文档则可能详细比较了这些算法的性能和适用场景。`readme.txt`文件可能是对整个项目的简要说明,包括如何运行和...
java排序算法java排序算法插入选择冒泡java排序算法插入选择冒泡
Java实现中,可以使用一个临时变量存储当前元素,然后向左移动已排序元素,直到找到合适的位置插入。 3. 选择排序(Selection Sort): 选择排序每次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列...
`Arrays.sort()`可以轻松地对数组或列表进行升序或降序排序,无需手动实现排序算法。 学习排序算法不仅是理解数据结构和算法的基础,也有助于提升编程能力。通过分析和实践冒泡排序和选择排序的代码,可以深入了解...
下面是一个简单的Java实现: ```java public class QuickSort { public static void quickSort(int[] arr, int low, int high) { if (low ) { // 找到基准元素的正确位置 int pivotIndex = partition(arr, low,...
常见排序算法的实现与性能比较JAVA 问题描述:实现合并排序,插入排序,希尔排序,快速排序,冒泡排序,桶排序算法 实验要求: A. 在随机产生的空间大小分别为 N = 10, 1000,10000,100000 的排序样本(取值为[0...
堆排序:应用Java和Python分别实现堆排序算法; 堆排序:应用Java和Python分别实现堆排序算法; 堆排序:应用Java和Python分别实现堆排序算法; 堆排序:应用Java和Python分别实现堆排序算法; 堆排序:应用Java和...
java sort 简单的排序 好麻烦啊
Java实现冒泡排序的关键在于两个for循环,外层控制遍历次数,内层用于相邻元素的比较和交换。 2. 选择排序(Selection Sort) 选择排序每次找出未排序部分的最小(或最大)元素,然后将其与未排序部分的第一个元素...
在编程领域,排序算法是数据结构与算法学习中的基础部分,尤其在Java中,掌握不同的排序算法对于优化程序性能至关重要。本资源包含了七种经典的排序算法实现,它们分别是冒泡排序、插入排序、递归排序(这里可能是指...
本文将详细介绍几种常见的排序算法及其Java实现,同时也会涉及二叉树的基本概念和实现。 首先,让我们从最简单的排序算法开始。冒泡排序是一种基础的交换排序方法,它通过重复遍历待排序的数组,依次比较相邻元素并...
- 在实现排序算法时,应考虑算法的稳定性(稳定排序不会改变相等元素的相对顺序)、时间复杂度和空间复杂度,根据实际情况选择合适的排序算法。 - 考虑到数据的分布特点,对于已部分有序的数据,插入排序或冒泡...
【IT面试笔试中的排序算法Java实现】 在IT面试和笔试中,掌握各种排序算法的实现是必不可少的技能。本文将详细介绍几种经典的排序算法,并提供Java语言的实现代码,包括冒泡排序、插入排序、选择排序和快速排序。...
在实际应用中,插入排序和现则排序因为实现简单,使用的比较多,但是在对效率要求比较高、且待排序数据量大的场合,还是应该采用时间复杂度较低的排序算法,因此对排序算法进行试验比较,增强实践认识很有必要。...
在Java中,实现各种排序算法有助于理解数据结构和算法的原理,同时也能提高编程能力。以下是对Java中常见的几种排序算法的详细介绍: 1. **插入排序(Insertion Sort)** 插入排序是一种简单直观的排序算法。它的...
本压缩包"常见的七大排序算法Java实现.zip"包含了七种经典的排序算法在Java语言中的实现。尽管文件列表中并未明确列出每种排序算法的名称,但根据常规,这七大排序算法可能包括冒泡排序、插入排序、选择排序、快速...
下面将详细介绍这四种排序算法的原理、特点以及Java实现的关键点。 1. **冒泡排序**: 冒泡排序是一种简单直观的排序算法,通过不断交换相邻的逆序元素来逐步将较大的元素推向序列末尾。它的时间复杂度为O(n^2)。...
该工具包含有Java一些比较常见的排序算法和查找算法。 排序算法包括:冒泡排序、选择排序 、插入排序、希尔排序、快速排序、归并排序、基数排序(桶排序) 查找算法包括:线性查找、二分查找、插值查询、斐波那契...
除了插入排序和希尔排序,压缩包中还可能包含了其他几种常见的排序算法的Java实现,如冒泡排序、快速排序、选择排序、归并排序和堆排序等。每种排序算法都有其特定的适用场景和性能特点。例如,冒泡排序虽然简单,但...
在这个Java实现中,MRP系统可能包括以下几个关键部分: 1. **物料数据库**:系统会维护一个包含所有物料信息的数据库,如物料编码、描述、库存量、安全库存、预测需求等。在本案例中,数据存储在MySQL数据库中,...