`
EmarMandy
  • 浏览: 8208 次
  • 性别: Icon_minigender_2
  • 来自: 北京
最近访客 更多访客>>
社区版块
存档分类
最新评论

Hadoop学习1(转载)

阅读更多

什么是Hadoop?

Hadoop框架中最核心的设计就是:MapReduce和HDFS。MapReduce的思想是由Google的一篇论文所提及而被广为流传的,简单的一句话解释MapReduce就是“任务的分解与结果的汇总”。HDFS是Hadoop分布式文件系统(Hadoop Distributed File System)的缩写,为分布式计算存储提供了底层支持。

MapReduce从它名字上来看就大致可以看出个缘由,两个动词Map和Reduce,“Map(展开)”就是将一个任务分解成为多个任务,“Reduce”就是将分解后多任务处理的结果汇总起来,得出最后的分析结果。这不是什么新思想,其实在前面提到的多线程,多任务的设计就可以找到这种思想的影子。不论是现实社会,还是在程序设计中,一项工作往往可以被拆分成为多个任务,任务之间的关系可以分为两种:一种是不相关的任务,可以并行执行;另一种是任务之间有相互的依赖,先后顺序不能够颠倒,这类任务是无法并行处理的。回到大学时期,教授上课时让大家去分析关键路径,无非就是找最省时的任务分解执行方式。在分布式系统中,机器集群就可以看作硬件资源池,将并行的任务拆分,然后交由每一个空闲机器资源去处理,能够极大地提高计算效率,同时这种资源无关性,对于计算集群的扩展无疑提供了最好的设计保证。(其实我一直认为Hadoop的卡通图标不应该是一个小象,应该是蚂蚁,分布式计算就好比蚂蚁吃大象,廉价的机器群可以匹敌任何高性能的计算机,纵向扩展的曲线始终敌不过横向扩展的斜线)。任务分解处理以后,那就需要将处理以后的结果再汇总起来,这就是Reduce要做的工作。


图1:MapReduce结构示意图

上图就是MapReduce大致的结构图,在Map前还可能会对输入的数据有Split(分割)的过程,保证任务并行效率,在Map之后还会有Shuffle(混合)的过程,对于提高Reduce的效率以及减小数据传输的压力有很大的帮助。后面会具体提及这些部分的细节。

HDFS是分布式计算的存储基石,Hadoop的分布式文件系统和其他分布式文件系统有很多类似的特质。分布式文件系统基本的几个特点:

  1. 对于整个集群有单一的命名空间。
  2. 数据一致性。适合一次写入多次读取的模型,客户端在文件没有被成功创建之前无法看到文件存在。
  3. 文件会被分割成多个文件块,每个文件块被分配存储到数据节点上,而且根据配置会由复制文件块来保证数据的安全性。


图2:HDFS结构示意图

上图中展现了整个HDFS三个重要角色:NameNode、DataNode和Client。NameNode可以看作是分布式文件系统中的管理者,主要负责管理文件系统的命名空间、集群配置信息和存储块的复制等。NameNode会将文件系统的Meta-data存储在内存中,这些信息主要包括了文件信息、每一个文件对应的文件块的信息和每一个文件块在DataNode的信息等。DataNode是文件存储的基本单元,它将Block存储在本地文件系统中,保存了Block的Meta-data,同时周期性地将所有存在的Block信息发送给NameNode。Client就是需要获取分布式文件系统文件的应用程序。这里通过三个操作来说明他们之间的交互关系。

文件写入:

  1. Client向NameNode发起文件写入的请求。
  2. NameNode根据文件大小和文件块配置情况,返回给Client它所管理部分DataNode的信息。
  3. Client将文件划分为多个Block,根据DataNode的地址信息,按顺序写入到每一个DataNode块中。

文件读取:

  1. Client向NameNode发起文件读取的请求。
  2. NameNode返回文件存储的DataNode的信息。
  3. Client读取文件信息。

文件Block复制:

  1. NameNode发现部分文件的Block不符合最小复制数或者部分DataNode失效。
  2. 通知DataNode相互复制Block。
  3. DataNode开始直接相互复制。

最后再说一下HDFS的几个设计特点(对于框架设计值得借鉴):

  1. Block的放置:默认不配置。一个Block会有三份备份,一份放在NameNode指定的DataNode,另一份放在与指定DataNode非同一Rack上的DataNode,最后一份放在与指定DataNode同一Rack上的DataNode上。备份无非就是为了数据安全,考虑同一Rack的失败情况以及不同Rack之间数据拷贝性能问题就采用这种配置方式。
  2. 心跳检测DataNode的健康状况,如果发现问题就采取数据备份的方式来保证数据的安全性。
  3. 数据复制(场景为DataNode失败、需要平衡DataNode的存储利用率和需要平衡DataNode数据交互压力等情况):这里先说一下,使用HDFS的balancer命令,可以配置一个Threshold来平衡每一个DataNode磁盘利用率。例如设置了Threshold为10%,那么执行balancer命令的时候,首先统计所有DataNode的磁盘利用率的均值,然后判断如果某一个DataNode的磁盘利用率超过这个均值Threshold以上,那么将会把这个DataNode的block转移到磁盘利用率低的DataNode,这对于新节点的加入来说十分有用。
  4. 数据交验:采用CRC32作数据交验。在文件Block写入的时候除了写入数据还会写入交验信息,在读取的时候需要交验后再读入。
  5. NameNode是单点:如果失败的话,任务处理信息将会纪录在本地文件系统和远端的文件系统中。
  6. 数据管道性的写入:当客户端要写入文件到DataNode上,首先客户端读取一个Block然后写到第一个DataNode上,然后由第一个DataNode传递到备份的DataNode上,一直到所有需要写入这个Block的NataNode都成功写入,客户端才会继续开始写下一个Block。
  7. 安全模式:在分布式文件系统启动的时候,开始的时候会有安全模式,当分布式文件系统处于安全模式的情况下,文件系统中的内容不允许修改也不允许删除,直到安全模式结束。安全模式主要是为了系统启动的时候检查各个DataNode上数据块的有效性,同时根据策略必要的复制或者删除部分数据块。运行期通过命令也可以进入安全模式。在实践过程中,系统启动的时候去修改和删除文件也会有安全模式不允许修改的出错提示,只需要等待一会儿即可。

下面综合MapReduce和HDFS来看Hadoop的结构:


图3:Hadoop结构示意图

在Hadoop的系统中,会有一台Master,主要负责NameNode的工作以及JobTracker的工作。JobTracker的主要职责就是启动、跟踪和调度各个Slave的任务执行。还会有多台Slave,每一台Slave通常具有DataNode的功能并负责TaskTracker的工作。TaskTracker根据应用要求来结合本地数据执行Map任务以及Reduce任务。

说到这里,就要提到分布式计算最重要的一个设计点:Moving Computation is Cheaper than Moving Data。就是在分布式处理中,移动数据的代价总是高于转移计算的代价。简单来说就是分而治之的工作,需要将数据也分而存储,本地任务处理本地数据然后归总,这样才会保证分布式计算的高效性。

为什么要选择Hadoop?

说完了What,简单地说一下Why。官方网站已经给了很多的说明,这里就大致说一下其优点及使用的场景(没有不好的工具,只用不适用的工具,因此选择好场景才能够真正发挥分布式计算的作用):

  1. 可扩展:不论是存储的可扩展还是计算的可扩展都是Hadoop的设计根本。
  2. 经济:框架可以运行在任何普通的PC上。
  3. 可靠:分布式文件系统的备份恢复机制以及MapReduce的任务监控保证了分布式处理的可靠性。
  4. 高效:分布式文件系统的高效数据交互实现以及MapReduce结合Local Data处理的模式,为高效处理海量的信息作了基础准备。

使用场景:个人觉得最适合的就是海量数据的分析,其实Google最早提出MapReduce也就是为了海量数据分析。同时HDFS最早是为了搜索引擎实现而开发的,后来才被用于分布式计算框架中。海量数据被分割于多个节点,然后由每一个节点并行计算,将得出的结果归并到输出。同时第一阶段的输出又可以作为下一阶段计算的输入,因此可以想象到一个树状结构的分布式计算图,在不同阶段都有不同产出,同时并行和串行结合的计算也可以很好地在分布式集群的资源下得以高效的处理。

分享到:
评论

相关推荐

    Hadoop学习资料

    以上总结的知识点均来自给定文件的内容,涵盖了Hadoop的学习资料、版本历史、生态圈、安装、HDFS、MapReduce、Zookeeper、HBase、Hive、Storm以及数据挖掘和推荐系统等多个方面,为学习和使用Hadoop提供了全面的理论...

    Hadoop学习笔记

    Hadoop学习笔记,自己总结的一些Hadoop学习笔记,比较简单。

    最新Hadoop学习笔记

    **Hadoop学习笔记详解** Hadoop是一个开源的分布式计算框架,由Apache基金会开发,主要用于处理和存储海量数据。它的核心组件包括HDFS(Hadoop Distributed File System)和MapReduce,两者构成了大数据处理的基础...

    java及hadoop学习资料

    1. **Hadoop架构**:Hadoop由HDFS(分布式文件系统)和MapReduce(分布式计算模型)两大部分构成,学习这两者的协同工作原理。 2. **HDFS**:理解HDFS的数据存储方式,包括块大小、副本策略、NameNode和DataNode的...

    Hadoop 学习笔记.md

    Hadoop 学习笔记.md

    Hadoop学习路线图

    有计划的安排大数据的学习之路,可以在对Hadoop的学习规划上有一个更清晰的目标!

    hadoop学习总结1-5

    这份"hadopp学习总结1-5"的资料很可能是针对Hadoop基础到进阶的一系列教程或笔记,旨在帮助学习者掌握这个强大的工具。下面我们将深入探讨Hadoop的相关知识点。 1. **Hadoop简介**: Hadoop是Apache软件基金会的一...

    大数据之Hadoop学习教程+笔记合计_超详细完整.zip

    大数据之Hadoop学习教程+笔记合计_超详细完整.zip

    Hadoop学习资料1

    这个“Hadoop学习资料1”的压缩包包含了几个重要的资源,可以帮助我们深入了解和掌握Hadoop的核心概念和技术。 首先,"Deep Learning with Hadoop"可能是一本关于如何在Hadoop生态系统中实施深度学习的书籍或教程。...

    Hadoop学习总结和源码分析

    本文将基于“Hadoop学习总结和源码分析”这一主题,结合提供的文档资源,深入探讨Hadoop的核心组件HDFS(Hadoop Distributed File System)和MapReduce。 首先,我们从“Hadoop学习总结之一:HDFS简介.doc”开始,...

    hadoop学习资料书

    1. Hive:基于Hadoop的数据仓库工具,提供了SQL-like查询语言(HQL)来处理存储在Hadoop上的数据,使得非程序员也能方便地操作大数据。 2. Pig:是一个高级数据流语言和执行框架,用于分析大型数据集。Pig Latin是...

    HADOOP学习笔记

    【HADOOP学习笔记】 Hadoop是Apache基金会开发的一个开源分布式计算框架,是云计算领域的重要组成部分,尤其在大数据处理方面有着广泛的应用。本学习笔记将深入探讨Hadoop的核心组件、架构以及如何搭建云计算平台。...

    Hadoop学习总结

    以下是对Hadoop学习的详细总结: **HDFS(Hadoop Distributed File System)简介** HDFS是Hadoop的核心组件之一,是一个高度容错性的分布式文件系统。它被设计成能在普通的硬件上运行,并能够处理大规模的数据集。...

    学习hadoop--java零基础学习hadoop手册

    1. **高级特性**:学习Hadoop的高级特性,如容错机制、压缩算法等。 2. **性能优化**:掌握Hadoop性能调优的方法和技术。 3. **大数据处理框架**:了解除Hadoop之外的其他大数据处理框架,如Apache Spark、Flink等。...

    hadoop学习资料

    与孙老师交流Hadoop学习方法也是一种宝贵的学习机会。在学习过程中遇到问题时,可以向孙老师请教,获取及时的帮助和支持。此外,加入相关的学习社区或论坛,与其他学习者互动交流,也是提高学习效率的有效途径之一。...

    hadoop学习资料(一)

    1. **Hadoop Distributed File System (HDFS)**:HDFS是Hadoop的基础,是一个高度容错性的文件系统,它设计用于运行在廉价硬件上。HDFS将大文件分割成块,并将这些数据块分布在集群的不同节点上,确保数据冗余和高...

    hadoop学习资料汇总

    这份"hadopp学习资料汇总"包含的资源旨在帮助初学者系统地理解和掌握Hadoop的核心概念和技术。 首先,Hadoop的核心组件包括HDFS(Hadoop Distributed File System)和MapReduce。HDFS是Hadoop的数据存储系统,它将...

Global site tag (gtag.js) - Google Analytics