`
dolaameng328
  • 浏览: 31022 次
  • 性别: Icon_minigender_1
  • 来自: 成都
社区版块
存档分类
最新评论

spinlock,mutex,semaphore,critical section的作用与区别

阅读更多

--------------------------------------------------------------------------------------------

 Mutex是一把钥匙,一个人拿了就可进入一个房间,出来的时候把钥匙交给队列的第一个。一般的用法是用于串行化对critical section代码的访问,保证这段代码不会被并行的运行。

Semaphore是一件可以容纳N人的房间,如果人不满就可以进去,如果人满了,就要等待有人出来。对于N=1的情况,称为binary semaphore。一般的用法是,用于限制对于某一资源的同时访问。

Binary semaphore与Mutex的差异:

在有的系统中Binary semaphore与Mutex是没有差异的。在有的系统上,主要的差异是mutex一定要由获得锁的进程来释放。而semaphore可以由其它进程释放(这时的semaphore实际就是个原子的变量,大家可以加或减),因此semaphore可以用于进程间同步。Semaphore的同步功能是所有系统都支持的,而Mutex能否由其他进程释放则未定,因此建议mutex只用于保护critical section。而semaphore则用于保护某变量,或者同步。

另一个概念是spin lock,这是一个内核态概念。spin lock与semaphore的主要区别是spin lock是busy waiting,而semaphore是sleep。对于可以sleep的进程来说,busy waiting当然没有意义。对于单CPU的系统,busy waiting当然更没意义(没有CPU可以释放锁)。因此,只有多CPU的内核态非进程空间,才会用到spin lock。Linux kernel的spin lock在非SMP的情况下,只是关irq,没有别的操作,用于确保该段程序的运行不会被打断。其实也就是类似mutex的作用,串行化对critical section的访问。但是mutex不能保护中断的打断,也不能在中断处理程序中被调用。而spin lock也一般没有必要用于可以sleep的进程空间。
---------------------------------------------------------------------------------------------

 

内核同步措施

    为了避免并发,防止竞争。内核提供了一组同步方法来提供对共享数据的保护。 我们的重点不是介绍这些方法的详细用法,而是强调为什么使用这些方法和它们之间的差别。
    Linux 使用的同步机制可以说从2.0到2.6以来不断发展完善。从最初的原子操作,到后来的信号量,从大内核锁到今天的自旋锁。这些同步机制的发展伴随 Linux从单处理器到对称多处理器的过度;伴随着从非抢占内核到抢占内核的过度。锁机制越来越有效,也越来越复杂。
    目前来说内核中原子操作多用来做计数使用,其它情况最常用的是两种锁以及它们的变种:一个是自旋锁,另一个是信号量。我们下面就来着重介绍一下这两种锁机制。


自旋锁

    自旋锁是专为防止多处理器并发而引入的一种锁,它在内核中大量应用于中断处理等部分(对于单处理器来说,防止中断处理中的并发可简单采用关闭中断的方式,不需要自旋锁)。
    自旋锁最多只能被一个内核任务持有,如果一个内核任务试图请求一个已被争用(已经被持有)的自旋锁,那么这个任务就会一直进行忙循环——旋转——等待锁重新可用。要是锁未被争用,请求它的内核任务便能立刻得到它并且继续进行。自旋锁可以在任何时刻防止多于一个的内核任务同时进入临界区,因此这种锁可有效地避免多处理器上并发运行的内核任务竞争共享资源。
    事实上,自旋锁的初衷就是:在短期间内进行轻量级的锁定。一个被争用的自旋锁使得请求它的线程在等待锁重新可用的期间进行自旋(特别浪费处理器时间),所以自旋锁不应该被持有时间过长。如果需要长时间锁定的话, 最好使用信号量。
自旋锁的基本形式如下:
    spin_lock(&mr_lock);
    //临界区
    spin_unlock(&mr_lock);

    因为自旋锁在同一时刻只能被最多一个内核任务持有,所以一个时刻只有一个线程允许存在于临界区中。这点很好地满足了对称多处理机器需要的锁定服务。在单处理器上,自旋锁仅仅当作一个设置内核抢占的开关。如果内核抢占也不存在,那么自旋锁会在编译时被完全剔除出内核。
    简单的说,自旋锁在内核中主要用来防止多处理器中并发访问临界区,防止内核抢占造成的竞争。另外自旋锁不允许任务睡眠(持有自旋锁的任务睡眠会造成自死锁——因为睡眠有可能造成持有锁的内核任务被重新调度,而再次申请自己已持有的锁),它能够在中断上下文中使用。
    死锁:假设有一个或多个内核任务和一个或多个资源,每个内核都在等待其中的一个资源,但所有的资源都已经被占用了。这便会发生所有内核任务都在相互等待,但它们永远不会释放已经占有的资源,于是任何内核任务都无法获得所需要的资源,无法继续运行,这便意味着死锁发生了。自死琐是说自己占有了某个资源,然后自己又申请自己已占有的资源,显然不可能再获得该资源,因此就自缚手脚了。


信号量
    Linux中的信号量是一种睡眠锁。如果有一个任务试图获得一个已被持有的信号量时,信号量会将其推入等待队列,然后让其睡眠。这时处理器获得自由去执行其它代码。当持有信号量的进程将信号量释放后,在等待队列中的一个任务将被唤醒,从而便可以获得这个信号量。
    信号量的睡眠特性,使得信号量适用于锁会被长时间持有的情况;只能在进程上下文中使用,因为中断上下文中是不能被调度的;另外当代码持有信号量时,不可以再持有自旋锁。

信号量基本使用形式为:
static DECLARE_MUTEX(mr_sem);//声明互斥信号量
if(down_interruptible(&mr_sem))
    //可被中断的睡眠,当信号来到,睡眠的任务被唤醒 
    //临界区
up(&mr_sem);


信号量和自旋锁区别
    虽然听起来两者之间的使用条件复杂,其实在实际使用中信号量和自旋锁并不易混淆。注意以下原则:
    如果代码需要睡眠——这往往是发生在和用户空间同步时——使用信号量是唯一的选择。由于不受睡眠的限制,使用信号量通常来说更加简单一些。如果需要在自旋锁和信号量中作选择,应该取决于锁被持有的时间长短。理想情况是所有的锁都应该尽可能短的被持有,但是如果锁的持有时间较长的话,使用信号量是更好的选择。另外,信号量不同于自旋锁,它不会关闭内核抢占,所以持有信号量的代码可以被抢占。这意味者信号量不会对影响调度反应时间带来负面影响。


自旋锁对信号量

需求                     建议的加锁方法

低开销加锁               优先使用自旋锁
短期锁定                 优先使用自旋锁
长期加锁                 优先使用信号量
中断上下文中加锁          使用自旋锁
持有锁是需要睡眠、调度     使用信号量

---------------------------------------------------------------------------------------------

 

 

临界区(Critical Section)

    保证在某一时刻只有一个线程能访问数据的简便办法。在任意时刻只允许一个线程对共享资源进行访问。如果有多个线程试图同时访问临界区,那么在有一个线程进入后其他所有试图访问此临界区的线程将被挂起,并一直持续到进入临界区的线程离开。临界区在被释放后,其他线程可以继续抢占,并以此达到用原子方式操作共享资源的目的。

  

    临界区包含两个操作原语: EnterCriticalSection() 进入临界区 LeaveCriticalSection() 离开临界区

    EnterCriticalSection()语句执行后代码将进入临界区以后无论发生什么,必须确保与之匹配的LeaveCriticalSection()都能够被执行到。否则临界区保护的共享资源将永远不会被释放。在使用临界区时,一般不允许其运行时间过长,只要进入临界区的线程还没有离开,其他所有试图进入此临界区的线程都会被挂起而进入到等待状态,并会在一定程度上影响。程序的运行性能。尤其需要注意的是不要将等待用户输入或是其他一些外界干预的操作包含到临界区。如果进入了临界区却一直没有释放,同样也会引起其他线程的长时间等待。换句话说,在执行了EnterCriticalSection()语句进入临界区后无论发生什么,必须确保与之匹配的LeaveCriticalSection()都能够被执行到。可以通过添加结构化异常处理代码来确保LeaveCriticalSection()语句的执行。虽然临界区同步速度很快,但却只能用来同步本进程内的线程,而不可用来同步多个进程中的线程。

    MFC提供了很多功能完备的类,我用MFC实现了临界区。MFC为临界区提供有一个CCriticalSection类,使用该类进行线程同步处理是非常简单的。只需在线程函数中用CCriticalSection类成员函数Lock()和UnLock()标定出被保护代码片段即可。Lock()后代码用到的资源自动被视为临界区内的资源被保护。UnLock后别的线程才能访问这些资源。

互斥量(Mutex)

   互斥(Mutex)是一种用途非常广泛的内核对象。能够保证多个线程对同一共享资源的互斥访问。同临界区有些类似,只有拥有互斥对象的线程才具有访问资源的权限,由于互斥对象只有一个,因此就决定了任何情况下此共享资源都不会同时被多个线程所访问。当前占据资源的线程在任务处理完后应将拥有的互斥对象交出,以便其他线程在获得后得以访问资源。与其他几种内核对象不同,互斥对象在操作系统中拥有特殊代码,并由操作系统来管理,操作系统甚至还允许其进行一些其他内核对象所不能进行的非常规操作。 互斥量跟临界区很相似,只有拥有互斥对象的线程才具有访问资源的权限,由于互斥对象只有一个,因此就决定了任何情况下此共享资源都不会同时被多个线程所访问。当前占据资源的线程在任务处理完后应将拥有的互斥对象交出,以便其他线程在获得后得以访问资源。互斥量比临界区复杂。因为使用互斥不仅仅能够在同一应用程序不同线程中实现资源的安全共享,而且可以在不同应用程序的线程之间实现对资源的安全共享。

    以互斥内核对象来保持线程同步可能用到的函数主要有CreateMutex()、OpenMutex()、ReleaseMutex()、WaitForSingleObject()和WaitForMultipleObjects()等。在使用互斥对象前,首先要通过CreateMutex()或OpenMutex()创建或打开一个互斥对象。CreateMutex()函数原型为:

HANDLE CreateMutex(
 LPSECURITY_ATTRIBUTES lpMutexAttributes, // 安全属性指针
 BOOL bInitialOwner, // 初始拥有者
 LPCTSTR lpName // 互斥对象名
);

  参数bInitialOwner主要用来控制互斥对象的初始状态。一般多将其设置为FALSE,以表明互斥对象在创建时并没有为任何线程所占有。如果在创建互斥对象时指定了对象名,那么可以在本进程其他地方或是在其他进程通过OpenMutex()函数得到此互斥对象的句柄。OpenMutex()函数原型为:

HANDLE OpenMutex(
 DWORD dwDesiredAccess, // 访问标志
 BOOL bInheritHandle, // 继承标志
 LPCTSTR lpName // 互斥对象名
);

  当目前对资源具有访问权的线程不再需要访问此资源而要离开时,必须通过ReleaseMutex()函数来释放其拥有的互斥对象,其函数原型为:

BOOL ReleaseMutex(HANDLE hMutex);

  其唯一的参数hMutex为待释放的互斥对象句柄。至于WaitForSingleObject()和WaitForMultipleObjects()等待函数在互斥对象保持线程同步中所起的作用与在其他内核对象中的作用是基本一致的,也是等待互斥内核对象的通知。但是这里需要特别指出的是:在互斥对象通知引起调用等待函数返回时,等待函数的返回值不再是通常的WAIT_OBJECT_0(对于WaitForSingleObject()函数)或是在WAIT_OBJECT_0到WAIT_OBJECT_0+nCount-1之间的一个值(对于WaitForMultipleObjects()函数),而是将返回一个WAIT_ABANDONED_0(对于WaitForSingleObject()函数)或是在WAIT_ABANDONED_0到WAIT_ABANDONED_0+nCount-1之间的一个值(对于WaitForMultipleObjects()函数)。以此来表明线程正在等待的互斥对象由另外一个线程所拥有,而此线程却在使用完共享资源前就已经终止。除此之外,使用互斥对象的方法在等待线程的可调度性上同使用其他几种内核对象的方法也有所不同,其他内核对象在没有得到通知时,受调用等待函数的作用,线程将会挂起,同时失去可调度性,而使用互斥的方法却可以在等待的同时仍具有可调度性,这也正是互斥对象所能完成的非常规操作之一。

  在编写程序时,互斥对象多用在对那些为多个线程所访问的内存块的保护上,可以确保任何线程在处理此内存块时都对其拥有可靠的独占访问权。

    互斥对象在MFC中通过CMutex类进行表述。使用CMutex类的方法非常简单,在构造CMutex类对象的同时可以指明待查询的互斥对象的名字,在构造函数返回后即可访问此互斥变量。CMutex类也是只含有构造函数这唯一的成员函数,当完成对互斥对象保护资源的访问后,可通过调用从父类CSyncObject继承的UnLock()函数完成对互斥对象的释放。CMutex类构造函数原型为:

CMutex( BOOL bInitiallyOwn = FALSE, LPCTSTR lpszName = NULL, LPSECURITY_ATTRIBUTES lpsaAttribute = NULL );

  该类的适用范围和实现原理与API方式创建的互斥内核对象是完全类似的,但要简洁的多。

信号量(Semaphores)

    信号量对象对线程的同步方式与前面几种方法不同,信号允许多个线程同时使用共享资源,这与操作系统中的PV操作相同。它指出了同时访问共享资源的线程最大数目。它允许多个线程在同一时刻访问同一资源,但是需要限制在同一时刻访问此资源的最大线程数目。在用CreateSemaphore()创建信号量时即要同时指出允许的最大资源计数和当前可用资源计数。一般是将当前可用资源计数设置为最大资源计数,每增加一个线程对共享资源的访问,当前可用资源计数就会减1,只要当前可用资源计数是大于0的,就可以发出信号量信号。但是当前可用计数减小到0时则说明当前占用资源的线程数已经达到了所允许的最大数目,不能在允许其他线程的进入,此时的信号量信号将无法发出。线程在处理完共享资源后,应在离开的同时通过ReleaseSemaphore()函数将当前可用资源计数加1。在任何时候当前可用资源计数决不可能大于最大资源计数。 信号量是通过计数来对线程访问资源进行控制的,而实际上信号量确实也被称作Dijkstra计数器。


    PV操作及信号量的概念都是由荷兰科学家E.W.Dijkstra提出的。信号量S是一个整数,S大于等于零时代表可供并发进程使用的资源实体数,但S小于零时则表示正在等待使用共享资源的进程数。

    P操作申请资源: 
    (1)S减1; 
    (2)若S减1后仍大于等于零,则进程继续执行; 
    (3)若S减1后小于零,则该进程被阻塞后进入与该信号相对应的队列中,然后转入进程调度。 
   
    V操作 释放资源: 
    (1)S加1; 
    (2)若相加结果大于零,则进程继续执行; 
    (3)若相加结果小于等于零,则从该信号的等待队列中唤醒一个等待进程,然后再返回原进程继续执行或转入进程调度。

    使用信号量内核对象进行线程同步主要会用到CreateSemaphore()、OpenSemaphore()、ReleaseSemaphore()、WaitForSingleObject()和WaitForMultipleObjects()等函数。其中,CreateSemaphore()用来创建一个信号量内核对象,其函数原型为:

HANDLE CreateSemaphore(
 LPSECURITY_ATTRIBUTES lpSemaphoreAttributes, // 安全属性指针
 LONG lInitialCount, // 初始计数
 LONG lMaximumCount, // 最大计数
 LPCTSTR lpName // 对象名指针
);

  参数lMaximumCount是一个有符号32位值,定义了允许的最大资源计数,最大取值不能超过4294967295。lpName参数可以为创建的信号量定义一个名字,由于其创建的是一个内核对象,因此在其他进程中可以通过该名字而得到此信号量。OpenSemaphore()函数即可用来根据信号量名打开在其他进程中创建的信号量,函数原型如下:

HANDLE OpenSemaphore(
 DWORD dwDesiredAccess, // 访问标志
 BOOL bInheritHandle, // 继承标志
 LPCTSTR lpName // 信号量名
);

  在线程离开对共享资源的处理时,必须通过ReleaseSemaphore()来增加当前可用资源计数。否则将会出现当前正在处理共享资源的实际线程数并没有达到要限制的数值,而其他线程却因为当前可用资源计数为0而仍无法进入的情况。ReleaseSemaphore()的函数原型为:

BOOL ReleaseSemaphore(
 HANDLE hSemaphore, // 信号量句柄
 LONG lReleaseCount, // 计数递增数量
 LPLONG lpPreviousCount // 先前计数
);

  该函数将lReleaseCount中的值添加给信号量的当前资源计数,一般将lReleaseCount设置为1,如果需要也可以设置其他的值。WaitForSingleObject()和WaitForMultipleObjects()主要用在试图进入共享资源的线程函数入口处,主要用来判断信号量的当前可用资源计数是否允许本线程的进入。只有在当前可用资源计数值大于0时,被监视的信号量内核对象才会得到通知。

  信号量的使用特点使其更适用于对Socket(套接字)程序中线程的同步。例如,网络上的HTTP服务器要对同一时间内访问同一页面的用户数加以限制,这时可以为没一个用户对服务器的页面请求设置一个线程,而页面则是待保护的共享资源,通过使用信号量对线程的同步作用可以确保在任一时刻无论有多少用户对某一页面进行访问,只有不大于设定的最大用户数目的线程能够进行访问,而其他的访问企图则被挂起,只有在有用户退出对此页面的访问后才有可能进入。

在MFC中,通过CSemaphore类对信号量作了表述。该类只具有一个构造函数,可以构造一个信号量对象,并对初始资源计数、最大资源计数、对象名和安全属性等进行初始化,其原型如下:

CSemaphore( LONG lInitialCount = 1, LONG lMaxCount = 1, LPCTSTR pstrName = NULL, LPSECURITY_ATTRIBUTES lpsaAttributes = NULL );

  在构造了CSemaphore类对象后,任何一个访问受保护共享资源的线程都必须通过CSemaphore从父类CSyncObject类继承得到的Lock()和UnLock()成员函数来访问或释放CSemaphore对象。与前面介绍的几种通过MFC类保持线程同步的方法类似,通过CSemaphore类也可以将前面的线程同步代码进行改写,这两种使用信号量的线程同步方法无论是在实现原理上还是从实现结果上都是完全一致的。

事件(Event)

    事件对象也可以通过通知操作的方式来保持线程的同步。并且可以实现不同进程中的线程同步操作。

    信号量包含的几个操作原语: 
    CreateEvent() 创建一个信号量 
    OpenEvent() 打开一个事件 
    SetEvent() 回置事件 
    WaitForSingleObject() 等待一个事件 
    WaitForMultipleObjects() 等待多个事件

    使用临界区只能同步同一进程中的线程,而使用事件内核对象则可以对进程外的线程进行同步,其前提是得到对此事件对象的访问权。可以通过OpenEvent()函数获取得到,其函数原型为:

HANDLE OpenEvent(
 DWORD dwDesiredAccess, // 访问标志
 BOOL bInheritHandle, // 继承标志
 LPCTSTR lpName // 指向事件对象名的指针
);

  如果事件对象已创建(在创建事件时需要指定事件名),函数将返回指定事件的句柄。对于那些在创建事件时没有指定事件名的事件内核对象,可以通过使用内核对象的继承性或是调用DuplicateHandle()函数来调用CreateEvent()以获得对指定事件对象的访问权。在获取到访问权后所进行的同步操作与在同一个进程中所进行的线程同步操作是一样的。

  如果需要在一个线程中等待多个事件,则用WaitForMultipleObjects()来等待。WaitForMultipleObjects()与WaitForSingleObject()类似,同时监视位于句柄数组中的所有句柄。这些被监视对象的句柄享有平等的优先权,任何一个句柄都不可能比其他句柄具有更高的优先权。WaitForMultipleObjects()的函数原型为:

DWORD WaitForMultipleObjects(
 DWORD nCount, // 等待句柄数
 CONST HANDLE *lpHandles, // 句柄数组首地址
 BOOL fWaitAll, // 等待标志
 DWORD dwMilliseconds // 等待时间间隔
);

  参数nCount指定了要等待的内核对象的数目,存放这些内核对象的数组由lpHandles来指向。fWaitAll对指定的这nCount个内核对象的两种等待方式进行了指定,为TRUE时当所有对象都被通知时函数才会返回,为FALSE则只要其中任何一个得到通知就可以返回。dwMilliseconds在这里的作用与在WaitForSingleObject()中的作用是完全一致的。如果等待超时,函数将返回WAIT_TIMEOUT。如果返回WAIT_OBJECT_0到WAIT_OBJECT_0+nCount-1中的某个值,则说明所有指定对象的状态均为已通知状态(当fWaitAll为TRUE时)或是用以减去WAIT_OBJECT_0而得到发生通知的对象的索引(当fWaitAll为FALSE时)。如果返回值在WAIT_ABANDONED_0与WAIT_ABANDONED_0+nCount-1之间,则表示所有指定对象的状态均为已通知,且其中至少有一个对象是被丢弃的互斥对象(当fWaitAll为TRUE时),或是用以减去WAIT_OBJECT_0表示一个等待正常结束的互斥对象的索引(当fWaitAll为FALSE时)。

MFC为事件相关处理也提供了一个CEvent类,共包含有除构造函数外的4个成员函数PulseEvent()、ResetEvent()、SetEvent()和UnLock()。在功能上分别相当与Win32 API的PulseEvent()、ResetEvent()、SetEvent()和CloseHandle()等函数。而构造函数则履行了原CreateEvent()函数创建事件对象的职责,其函数原型为:

CEvent(BOOL bInitiallyOwn = FALSE, BOOL bManualReset = FALSE, LPCTSTR lpszName = NULL, LPSECURITY_ATTRIBUTES lpsaAttribute = NULL );

  按照此缺省设置将创建一个自动复位、初始状态为复位状态的没有名字的事件对象。封装后的CEvent类使用起来更加方便,

事件可以实现不同进程中的线程同步操作,并且可以方便的实现多个线程的优先比较等待操作,例如写多个WaitForSingleObject来代替WaitForMultipleObjects从而使编程更加灵活。

总结:

    1. 互斥量与临界区的作用非常相似,但互斥量是可以命名的,也就是说它可以跨越进程使用。所以创建互斥量需要的资源更多,所以如果只为了在进程内部是用的话使用临界区会带来速度上的优势并能够减少资源占用量。因为互斥量是跨进程的互斥量一旦被创建,就可以通过名字打开它。

    2. 互斥量(Mutex),信号灯(Semaphore),事件(Event)都可以被跨越进程使用来进行同步数据操作,而其他的对象与数据同步操作无关,但对于进程和线程来讲,如果进程和线程在运行状态则为无信号状态,在退出后为有信号状态。所以可以使用WaitForSingleObject来等待进程和线程退出。

    3. 通过互斥量可以指定资源被独占的方式使用,但如果有下面一种情况通过互斥量就无法处理,比如现在一位用户购买了一份三个并发访问许可的数据库系统,可以根据用户购买的访问许可数量来决定有多少个线程/进程能同时进行数据库操作,这时候如果利用互斥量就没有办法完成这个要求,信号灯对象可以说是一种资源计数器。

 

分享到:
评论

相关推荐

    Critical Section

    在操作系统领域,"临界区"(Critical Section)是一个至关重要的概念,它涉及到多线程编程和并发控制。临界区是指程序中的某段代码,这段代码需要独占访问共享资源,以防止多个线程同时执行导致数据不一致或错误。在...

    深信服09年校招聘笔试开发类试题

    - 前面已解释过spinlock、mutex、semaphore和critical section。 10. 其他知识点: - 变量存储位置:变量可存储在栈、堆、数据段、代码段等。 - 结构体大小:结构体的大小受对齐规则影响,不同平台的对齐规则...

    深信服部分笔试题(2008.10.14)

    题目中的`spinlock`、`mutex`、`semaphore`和`critical section`都是并发编程中常见的同步原语: - **Spinlock**:一种简单的锁定机制,适用于轻量级同步需求。 - **Mutex**:互斥锁,用于保护共享资源免受多个线程...

    linux学习重点1

    Linux 中的同步机制有多种,包括原子操作、自旋锁、信号量、读写信号量、互斥锁、CriticalSection、Mutex等。这些同步机制用于解决多线程或多进程之间的同步问题。 原子操作(atomic) ----------------- 原子操作...

    超级简单的程序锁.........

    在操作系统层面,程序锁可以是内建的机制,如信号量(Semaphore)、互斥量(Mutex)或临界区(Critical Section)。在编程语言层面,例如在C++中,我们可以使用`std::mutex`,在Java中则有`synchronized`关键字来...

    C#线程控制

    当需要在多个线程间同步时,可以使用Monitor、Mutex、Semaphore、SpinLock等同步原语,防止数据竞争和其他并发问题。例如,Monitor类提供了Enter和Exit方法,用于实现临界区(Critical Section): ```csharp ...

    计算机加锁源码

    在操作系统层面,进程间的加锁通常通过内核提供的原语来实现,如信号量(semaphore)或临界区(critical section)。这些原语在硬件层面可能依赖于中断、处理器指令,如测试并设置(test-and-set)或比较并交换...

    linux锁机制分析

    含有竞态条件的代码段被称为**临界区**(Critical Section)。在多处理器系统(SMP)中,此类问题更为突出。 #### 二、Linux内核中的锁类型 Linux内核为了处理并发问题,提供了多种类型的锁。其中最为常见的包括...

    深信服科技公司校园招聘笔试题

    - **自旋锁 (Spinlock)**: 在循环中不断检查某个条件是否满足,适用于等待时间较短的情况。 - **原子操作**: 提供原子性的读取和写入操作,无需锁定。 #### 12. 操作系统 **题目:** 解释操作系统中的进程调度算法...

    深信服技术笔试题及答案

    - **CriticalSection**: - Windows 特有的轻量级互斥锁。 - 不支持等待条件。 ### 18. 正则表达式 - 强大的文本匹配和处理工具。 - 支持各种复杂的匹配规则。 ### 19. 字符串匹配问题 - 最快算法可能是 KMP ...

    LINUX内核有那几种锁详细介绍-综合文档

    5. 临界区 Critical Section 临界区是代码中的一小段区域,在同一时间内只允许一个线程执行。在临界区中,线程需要获取锁来保证执行期间不会被其他线程打断。临界区的管理依赖于锁的机制来确保线程安全。 6. 忙等待...

Global site tag (gtag.js) - Google Analytics