- 浏览: 215011 次
- 性别:
- 来自: 北京
文章分类
最新评论
-
strong8808:
activemq5.8.0 客户端,服务端启动序列图 -
xurichusheng:
第一题,如果使用 not exists 的话,可以改成:SEL ...
SQL笔试题 -
dingjun1:
cuisuqiang 写道如何解决呢?我的是对了也照样缓存增加 ...
事务未正确关闭引起的HIBERNATE SESSION不能正确关闭 -
dingjun1:
aijezdm915 写道lz ,我也是在写项目描述是犯愁,能 ...
如果在简历中描述项目 -
aijezdm915:
lz ,我也是在写项目描述是犯愁,能否给个你的简历demo,我 ...
如果在简历中描述项目
转载:http://blog.csdn.net/cutesource/archive/2010/09/26/5906705.aspx
JVM内存组成结构
JVM栈由堆、栈、本地方法栈、方法区等部分组成,结构图如下所示:
1)堆
所有通过new创建的对象的内存都在堆中分配,其大小可以通过-Xmx和-Xms来控制。堆被划分为新生代和旧生代,新生代又被进一步划分为Eden和Survivor区,最后Survivor由From Space和To Space组成,结构图如下所示:
* 新生代。新建的对象都是用新生代分配内存,Eden空间不足的时候,会把存活的对象转移到Survivor中,新生代大小可以由-Xmn来控制,也可以用-XX:SurvivorRatio来控制Eden和Survivor的比例
* 旧生代。用于存放新生代中经过多次垃圾回收仍然存活的对象
2)栈
每个线程执行每个方法的时候都会在栈中申请一个栈帧,每个栈帧包括局部变量区和操作数栈,用于存放此次方法调用过程中的临时变量、参数和中间结果
3)本地方法栈
用于支持native方法的执行,存储了每个native方法调用的状态
4)方法区
存放了要加载的类信息、静态变量、final类型的常量、属性和方法信息。JVM用持久代(Permanet Generation)来存放方法区,可通过-XX:PermSize和-XX:MaxPermSize来指定最小值和最大值
垃圾回收机制
JVM分别对新生代和旧生代采用不同的垃圾回收机制
新生代的GC:
新生代通常存活时间较短,因此基于Copying算法来进行回收,所谓Copying算法就是扫描出存活的对象,并复制到一块新的完全未使用的空间中,对应于新生代,就是在Eden和From Space或To Space之间copy。新生代采用空闲指针的方式来控制GC触发,指针保持最后一个分配的对象在新生代区间的位置,当有新的对象要分配内存时,用于检查空间是否足够,不够就触发GC。当连续分配对象时,对象会逐渐从eden到survivor,最后到旧生代,
用java visualVM来查看,能明显观察到新生代满了后,会把对象转移到旧生代,然后清空继续装载,当旧生代也满了后,就会报outofmemory的异常,如下图所示:
在执行机制上JVM提供了串行GC(Serial GC)、并行回收GC(Parallel Scavenge)和并行GC(ParNew)
1)串行GC
在整个扫描和复制过程采用单线程的方式来进行,适用于单CPU、新生代空间较小及对暂停时间要求不是非常高的应用上,是client级别默认的GC方式,可以通过-XX:+UseSerialGC来强制指定
2)并行回收GC
在整个扫描和复制过程采用多线程的方式来进行,适用于多CPU、对暂停时间要求较短的应用上,是server级别默认采用的GC方式,可用-XX:+UseParallelGC来强制指定,用-XX:ParallelGCThreads=4来指定线程数
3)并行GC
与旧生代的并发GC配合使用
旧生代的GC:
旧生代与新生代不同,对象存活的时间比较长,比较稳定,因此采用标记(Mark)算法来进行回收,所谓标记就是扫描出存活的对象,然后再进行回收未被标记的对象,回收后对用空出的空间要么进行合并,要么标记出来便于下次进行分配,总之就是要减少内存碎片带来的效率损耗。在执行机制上JVM提供了串行 GC(Serial MSC)、并行GC(parallel MSC)和并发GC(CMS),具体算法细节还有待进一步深入研究。
以上各种GC机制是需要组合使用的,指定方式由下表所示:
指定方式
新生代GC方式
旧生代GC方式
-XX:+UseSerialGC
串行GC
串行GC
-XX:+UseParallelGC
并行回收GC
并行GC
-XX:+UseConeMarkSweepGC
并行GC
并发GC
-XX:+UseParNewGC
并行GC
串行GC
-XX:+UseParallelOldGC
并行回收GC
并行GC
-XX:+ UseConeMarkSweepGC
-XX:+UseParNewGC
串行GC
并发GC
不支持的组合
1、-XX:+UseParNewGC -XX:+UseParallelOldGC
2、-XX:+UseParNewGC -XX:+UseSerialGC
转载:http://blog.csdn.net/cutesource/archive/2010/09/26/5907418.aspx
首先需要注意的是在对JVM内存调优的时候不能只看操作系统级别Java进程所占用的内存,这个数值不能准确的反应堆内存的真实占用情况,因为GC 过后这个值是不会变化的,因此内存调优的时候要更多地使用JDK提供的内存查看工具,比如JConsole和Java VisualVM。
对JVM内存的系统级的调优主要的目的是减少GC的频率和Full GC的次数,过多的GC和Full GC是会占用很多的系统资源(主要是CPU),影响系统的吞吐量。特别要关注Full GC,因为它会对整个堆进行整理,导致Full GC一般由于以下几种情况:
* 旧生代空间不足
调优时尽量让对象在新生代GC时被回收、让对象在新生代多存活一段时间和不要创建过大的对象及数组避免直接在旧生代创建对象
* Pemanet Generation空间不足
增大Perm Gen空间,避免太多静态对象
* 统计得到的GC后晋升到旧生代的平均大小大于旧生代剩余空间
控制好新生代和旧生代的比例
* System.gc()被显示调用
垃圾回收不要手动触发,尽量依靠JVM自身的机制
调优手段主要是通过控制堆内存的各个部分的比例和GC策略来实现,下面来看看各部分比例不良设置会导致什么后果
1)新生代设置过小
一是新生代GC次数非常频繁,增大系统消耗;二是导致大对象直接进入旧生代,占据了旧生代剩余空间,诱发Full GC
2)新生代设置过大
一是新生代设置过大会导致旧生代过小(堆总量一定),从而诱发Full GC;二是新生代GC耗时大幅度增加
一般说来新生代占整个堆1/3比较合适
3)Survivor设置过小
导致对象从eden直接到达旧生代,降低了在新生代的存活时间
4)Survivor设置过大
导致eden过小,增加了GC频率
另外,通过-XX:MaxTenuringThreshold=n来控制新生代存活时间,尽量让对象在新生代被回收
由上一篇博文[urlhttp://blog.csdn.net/cutesource/archive/2010/09/26/5906705.aspx]JVM学习笔记(三)------内存管理和垃圾回收[/url]可知新生代和旧生代都有多种GC策略和组合搭配,选择这些策略对于我们这些开发人员是个难题,JVM提供两种较为简单的GC策略的设置方式
1)吞吐量优先
JVM以吞吐量为指标,自行选择相应的GC策略及控制新生代与旧生代的大小比例,来达到吞吐量指标。这个值可由-XX:GCTimeRatio=n来设置
2)暂停时间优先
JVM以暂停时间为指标,自行选择相应的GC策略及控制新生代与旧生代的大小比例,尽量保证每次GC造成的应用停止时间都在指定的数值范围内完成。这个值可由-XX:MaxGCPauseRatio=n来设置
最后汇总一下JVM常见配置
1. 堆设置
* -Xms:初始堆大小
* -Xmx:最大堆大小
* -XX:NewSize=n:设置年轻代大小
* -XX:NewRatio=n:设置年轻代和年老代的比值。如:为3,表示年轻代与年老代比值为1:3,年轻代占整个年轻代年老代和的1/4
* -XX:SurvivorRatio=n:年轻代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如:3,表示Eden:Survivor=3:2,一个Survivor区占整个年轻代的1/5
* -XX:MaxPermSize=n:设置持久代大小
2. 收集器设置
* -XX:+UseSerialGC:设置串行收集器
* -XX:+UseParallelGC:设置并行收集器
* -XX:+UseParalledlOldGC:设置并行年老代收集器
* -XX:+UseConcMarkSweepGC:设置并发收集器
3. 垃圾回收统计信息
* -XX:+PrintGC
* -XX:+PrintGCDetails
* -XX:+PrintGCTimeStamps
* -Xloggc:filename
4. 并行收集器设置
* -XX:ParallelGCThreads=n:设置并行收集器收集时使用的CPU数。并行收集线程数。
* -XX:MaxGCPauseMillis=n:设置并行收集最大暂停时间
* -XX:GCTimeRatio=n:设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)
5. 并发收集器设置
* -XX:+CMSIncrementalMode:设置为增量模式。适用于单CPU情况。
* -XX:ParallelGCThreads=n:设置并发收集器年轻代收集方式为并行收集时,使用的CPU数。并行收集线程数。
JVM内存组成结构
JVM栈由堆、栈、本地方法栈、方法区等部分组成,结构图如下所示:
1)堆
所有通过new创建的对象的内存都在堆中分配,其大小可以通过-Xmx和-Xms来控制。堆被划分为新生代和旧生代,新生代又被进一步划分为Eden和Survivor区,最后Survivor由From Space和To Space组成,结构图如下所示:
* 新生代。新建的对象都是用新生代分配内存,Eden空间不足的时候,会把存活的对象转移到Survivor中,新生代大小可以由-Xmn来控制,也可以用-XX:SurvivorRatio来控制Eden和Survivor的比例
* 旧生代。用于存放新生代中经过多次垃圾回收仍然存活的对象
2)栈
每个线程执行每个方法的时候都会在栈中申请一个栈帧,每个栈帧包括局部变量区和操作数栈,用于存放此次方法调用过程中的临时变量、参数和中间结果
3)本地方法栈
用于支持native方法的执行,存储了每个native方法调用的状态
4)方法区
存放了要加载的类信息、静态变量、final类型的常量、属性和方法信息。JVM用持久代(Permanet Generation)来存放方法区,可通过-XX:PermSize和-XX:MaxPermSize来指定最小值和最大值
垃圾回收机制
JVM分别对新生代和旧生代采用不同的垃圾回收机制
新生代的GC:
新生代通常存活时间较短,因此基于Copying算法来进行回收,所谓Copying算法就是扫描出存活的对象,并复制到一块新的完全未使用的空间中,对应于新生代,就是在Eden和From Space或To Space之间copy。新生代采用空闲指针的方式来控制GC触发,指针保持最后一个分配的对象在新生代区间的位置,当有新的对象要分配内存时,用于检查空间是否足够,不够就触发GC。当连续分配对象时,对象会逐渐从eden到survivor,最后到旧生代,
用java visualVM来查看,能明显观察到新生代满了后,会把对象转移到旧生代,然后清空继续装载,当旧生代也满了后,就会报outofmemory的异常,如下图所示:
在执行机制上JVM提供了串行GC(Serial GC)、并行回收GC(Parallel Scavenge)和并行GC(ParNew)
1)串行GC
在整个扫描和复制过程采用单线程的方式来进行,适用于单CPU、新生代空间较小及对暂停时间要求不是非常高的应用上,是client级别默认的GC方式,可以通过-XX:+UseSerialGC来强制指定
2)并行回收GC
在整个扫描和复制过程采用多线程的方式来进行,适用于多CPU、对暂停时间要求较短的应用上,是server级别默认采用的GC方式,可用-XX:+UseParallelGC来强制指定,用-XX:ParallelGCThreads=4来指定线程数
3)并行GC
与旧生代的并发GC配合使用
旧生代的GC:
旧生代与新生代不同,对象存活的时间比较长,比较稳定,因此采用标记(Mark)算法来进行回收,所谓标记就是扫描出存活的对象,然后再进行回收未被标记的对象,回收后对用空出的空间要么进行合并,要么标记出来便于下次进行分配,总之就是要减少内存碎片带来的效率损耗。在执行机制上JVM提供了串行 GC(Serial MSC)、并行GC(parallel MSC)和并发GC(CMS),具体算法细节还有待进一步深入研究。
以上各种GC机制是需要组合使用的,指定方式由下表所示:
指定方式
新生代GC方式
旧生代GC方式
-XX:+UseSerialGC
串行GC
串行GC
-XX:+UseParallelGC
并行回收GC
并行GC
-XX:+UseConeMarkSweepGC
并行GC
并发GC
-XX:+UseParNewGC
并行GC
串行GC
-XX:+UseParallelOldGC
并行回收GC
并行GC
-XX:+ UseConeMarkSweepGC
-XX:+UseParNewGC
串行GC
并发GC
不支持的组合
1、-XX:+UseParNewGC -XX:+UseParallelOldGC
2、-XX:+UseParNewGC -XX:+UseSerialGC
转载:http://blog.csdn.net/cutesource/archive/2010/09/26/5907418.aspx
首先需要注意的是在对JVM内存调优的时候不能只看操作系统级别Java进程所占用的内存,这个数值不能准确的反应堆内存的真实占用情况,因为GC 过后这个值是不会变化的,因此内存调优的时候要更多地使用JDK提供的内存查看工具,比如JConsole和Java VisualVM。
对JVM内存的系统级的调优主要的目的是减少GC的频率和Full GC的次数,过多的GC和Full GC是会占用很多的系统资源(主要是CPU),影响系统的吞吐量。特别要关注Full GC,因为它会对整个堆进行整理,导致Full GC一般由于以下几种情况:
* 旧生代空间不足
调优时尽量让对象在新生代GC时被回收、让对象在新生代多存活一段时间和不要创建过大的对象及数组避免直接在旧生代创建对象
* Pemanet Generation空间不足
增大Perm Gen空间,避免太多静态对象
* 统计得到的GC后晋升到旧生代的平均大小大于旧生代剩余空间
控制好新生代和旧生代的比例
* System.gc()被显示调用
垃圾回收不要手动触发,尽量依靠JVM自身的机制
调优手段主要是通过控制堆内存的各个部分的比例和GC策略来实现,下面来看看各部分比例不良设置会导致什么后果
1)新生代设置过小
一是新生代GC次数非常频繁,增大系统消耗;二是导致大对象直接进入旧生代,占据了旧生代剩余空间,诱发Full GC
2)新生代设置过大
一是新生代设置过大会导致旧生代过小(堆总量一定),从而诱发Full GC;二是新生代GC耗时大幅度增加
一般说来新生代占整个堆1/3比较合适
3)Survivor设置过小
导致对象从eden直接到达旧生代,降低了在新生代的存活时间
4)Survivor设置过大
导致eden过小,增加了GC频率
另外,通过-XX:MaxTenuringThreshold=n来控制新生代存活时间,尽量让对象在新生代被回收
由上一篇博文[urlhttp://blog.csdn.net/cutesource/archive/2010/09/26/5906705.aspx]JVM学习笔记(三)------内存管理和垃圾回收[/url]可知新生代和旧生代都有多种GC策略和组合搭配,选择这些策略对于我们这些开发人员是个难题,JVM提供两种较为简单的GC策略的设置方式
1)吞吐量优先
JVM以吞吐量为指标,自行选择相应的GC策略及控制新生代与旧生代的大小比例,来达到吞吐量指标。这个值可由-XX:GCTimeRatio=n来设置
2)暂停时间优先
JVM以暂停时间为指标,自行选择相应的GC策略及控制新生代与旧生代的大小比例,尽量保证每次GC造成的应用停止时间都在指定的数值范围内完成。这个值可由-XX:MaxGCPauseRatio=n来设置
最后汇总一下JVM常见配置
1. 堆设置
* -Xms:初始堆大小
* -Xmx:最大堆大小
* -XX:NewSize=n:设置年轻代大小
* -XX:NewRatio=n:设置年轻代和年老代的比值。如:为3,表示年轻代与年老代比值为1:3,年轻代占整个年轻代年老代和的1/4
* -XX:SurvivorRatio=n:年轻代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如:3,表示Eden:Survivor=3:2,一个Survivor区占整个年轻代的1/5
* -XX:MaxPermSize=n:设置持久代大小
2. 收集器设置
* -XX:+UseSerialGC:设置串行收集器
* -XX:+UseParallelGC:设置并行收集器
* -XX:+UseParalledlOldGC:设置并行年老代收集器
* -XX:+UseConcMarkSweepGC:设置并发收集器
3. 垃圾回收统计信息
* -XX:+PrintGC
* -XX:+PrintGCDetails
* -XX:+PrintGCTimeStamps
* -Xloggc:filename
4. 并行收集器设置
* -XX:ParallelGCThreads=n:设置并行收集器收集时使用的CPU数。并行收集线程数。
* -XX:MaxGCPauseMillis=n:设置并行收集最大暂停时间
* -XX:GCTimeRatio=n:设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)
5. 并发收集器设置
* -XX:+CMSIncrementalMode:设置为增量模式。适用于单CPU情况。
* -XX:ParallelGCThreads=n:设置并发收集器年轻代收集方式为并行收集时,使用的CPU数。并行收集线程数。
发表评论
-
jstatd jsp 等不能正常运行的原因
2013-12-11 11:04 647[root@ bin]# ./jstatd Could not ... -
jvm信息查看
2013-06-03 08:28 7701、查看当前服务的cpu 、内存、磁盘等使用情况,看看是不是使 ... -
Paxos算法深入分析
2012-12-12 20:21 1059转载: http://blog.sina.com.cn/s/b ... -
Unveiling the java.lang.Out OfMemoryError
2011-04-13 19:02 923Unveiling the java.lang.Out OfM ... -
getOutputStream() has already been called for this response异常的原因和解决方法
2010-11-27 14:32 879getOutputStream() has already b ... -
servlet filter url-pattern
2010-10-28 09:47 1308ApplicationFilterFactory: /** ... -
java nio 笔记
2010-08-19 20:16 1982一、基础知识 操作系统 ... -
集合框架
2010-08-04 22:09 872集合框架: BitSet:??? Ha ... -
基本数据结构介绍
2010-08-01 18:22 950二叉查找树: 性质:设x为二叉查找树中的一个结点。如果y是x的 ... -
理解弱引用(Understanding Weak References)转
2010-07-31 12:58 1245转载:http://blog.csdn.net/x ... -
设置SESSION超时时间
2010-07-02 15:07 1476设置session时间的3个方法: 1. 在tomcat--c ... -
垃圾收集机制
2010-04-23 16:49 821转载:http://tech.ccidnet.com/art ... -
JAVA语言细节总结
2010-04-17 12:47 8731、java 源代码文件通常称为一个编译单元,每个编译单元内最 ... -
utf8的编码原理
2009-07-20 15:08 1162大概意思: 在UTF8中,字符使用1到6个八位序列编码。 只有 ... -
转发(forward)、包含(include)及转向(redirect)的区别与联系
2009-07-17 15:57 991转发(forward)、包含(include)及转向(redi ... -
对数运算公式
2009-07-03 16:15 2170附件二为自然对数的介绍PPT -
二叉树相关知识
2009-07-03 16:04 955一、二叉树的构建与打印 Node.java publ ... -
ThreadLocal的几种误区
2009-06-26 10:48 844转载:http://www.blogjava.ne ... -
JAR打包
2009-03-13 15:38 1008在CMD下,当我们敲下jar -help时,系统给我们提供了如 ... -
JAVA正则表达式
2009-03-02 18:32 1301正则表达式 常用语法 正则表达式的构造字符 匹配 X 字符X ...
相关推荐
JVM 内存溢出问题解析 JVM 内存溢出是指程序运行所需的内存大于虚拟机能提供的最大内存的情况。这种情况可能是由于数据量过大、死循环、静态变量和静态方法过多、递归、无法确定是否被引用的对象等原因引起的。同时...
《深入理解IDEA插件JProfiler11:高效优化JVM内存》 在Java开发领域,高效运行和优化JVM内存是至关重要的。IntelliJ IDEA(简称Idea)作为广受欢迎的Java集成开发环境,提供了一系列强大的工具来帮助开发者进行性能...
### JVM内存空间分配详解 #### 一、JVM内存模型概览 JVM(Java虚拟机)内存模型主要由以下几个部分组成:程序计数器、Java虚拟机栈、本地方法栈、Java堆以及方法区(在JDK 8之后称为元空间)。下面将对这几个部分...
JVM内存管理主要包括内存结构、内存分配以及垃圾回收(GC)等方面。了解这些知识对于优化Java应用程序的性能至关重要。 ### 1. JVM内存结构 #### 1.1.1 JVM内存概述 JVM内存分为几个关键区域,每个区域都有特定的...
在这份由Sun Microsystems公司出版的《JVM内存管理白皮书》中,我们可以找到关于Java虚拟机(JVM)内存管理的详细介绍和深入分析。这份文档对于想要深入了解JVM工作原理的读者来说是一份宝贵的学习资料。在这份...
### JVM内存配置优化 #### 一、理解JVM内存模型 在进行JVM内存配置优化之前,我们需要了解Java虚拟机(JVM)的内存结构。Java的逻辑内存模型大致分为几个部分: 1. **堆内存(Heap)**:主要用于存储对象实例、数组...
JVM内存模型深度剖析与优化 JVM内存模型是Java虚拟机的核心组件之一,它直接影响着Java应用程序的性能和可靠性。本文将深入剖析JVM内存模型的结构和工作机理,并讨论如何优化JVM参数以提高Java应用程序的性能。 一...
总之,MAT作为一款强大的JVM内存分析工具,对于优化Java应用的内存使用,提升应用性能,尤其是对于Mac OS X平台的开发者来说,是不可或缺的利器。通过熟练掌握MAT的使用,开发者可以更有效地管理和优化应用程序的...
本文将深入探讨如何在Java中获取JVM内存大小,包括堆内存的总量、最大值以及剩余空间,并解析给定代码片段中的关键概念。 ### JVM内存模型 在讨论如何获取JVM内存大小之前,首先需要理解JVM的内存布局。JVM内存...
### JVM内存监控工具详解 #### 引言 Java Virtual Machine (JVM) 是运行 Java 应用程序的核心组件,其性能直接影响应用的响应速度和稳定性。JVM 的内存管理是性能优化的关键,尤其是在高并发环境下,合理的内存...
该文档描述了开发测试环境中Docker及JVM内存限制部署方案
在开发和优化Java应用程序时,理解JVM内存日志至关重要,因为它可以帮助我们诊断性能问题,例如内存泄漏或过度的垃圾收集。`jmap`是Java的一个命令行工具,用于获取堆内存的详细信息,包括堆dump,这对于分析JVM内存...
在JVM内存管理中,内存泄漏是一种常见的性能问题,可能导致应用运行缓慢,甚至崩溃。MAT通过解析JVM生成的hprof文件(内存快照),可以深入分析堆内存的各个部分,包括对象分配、存活状态、引用关系等,帮助定位问题...
1. **JVM内存结构** JVM内存主要分为以下几个区域: - **方法区(Method Area)**:这是所有线程共享的区域,存储类信息、常量、静态变量、即时编译后的代码等。在Java 8以前,这部分也被称为永久代(Permanent ...
JVM 内存参数详解以及配置调优 JVM 内存参数是 Java 虚拟机中最重要的参数之一,它直接影响着 Java 应用程序的性能和稳定性。在这个资源中,我们将详细讨论 JVM 内存参数的配置和调优,包括 JVM 的结构、内存管理、...
MyEclipse修改jvm内存配置 MyEclipse是一款功能强大且广泛应用于企业级应用开发的集成开发环境(IDE)。在开发过程中,jvm虚拟机的内存配置直接影响着开发的效率和稳定性。如果jvm虚拟机的内存配置不当,可能会导致...
MAT,全称Memory Analyzer Tool,是IBM开发的一款强大的JVM内存分析工具,尤其适用于诊断Java应用程序的内存泄漏问题。在Java开发过程中,内存溢出(Out Of Memory)问题常常会导致程序异常终止,而MAT就是解决这类...
本资料总结主要关注JVM内存分配及其运行原理,这对于理解和优化Java应用程序的性能至关重要。 1. **JVM内存结构** JVM内存分为几个关键区域:方法区(Method Area)、堆(Heap)、栈(Stack)、程序计数器(PC ...
### JVM内存结构详解 #### 一、概述 Java虚拟机(JVM)作为Java程序的运行环境,其核心组件之一便是内存管理系统。理解JVM的内存布局对于开发高性能的应用程序至关重要。本文将详细介绍JVM内存结构及其各个组成部分...