LSH Algorithm and Implementation (E2LSH)
Locality-Sensitive Hashing (LSH) is an algorithm for solving the (approximate/exact) Near Neighbor Search in high dimensional spaces. On this webpage, you will find pointers to the newest LSH algorithm in Euclidean (l_2) spaces, as well as the description of the E2LSH package, an implementation of this new algorithm for the Euclidean space.
* Algorithm description:
o CACM survey of LSH (2008): "Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions" (by Alexandr Andoni and Piotr Indyk). Communications of the ACM, vol. 51, no. 1, 2008, pp. 117-122.
directly from CACM (for free). local copy (see CACM disclaimer).
o Most recent algorithm (2006): "Near-Optimal Hashing Algorithms for Near Neighbor Problem in High Dimensions" (by Alexandr Andoni and Piotr Indyk). In Proceedings of the Symposium on Foundations of Computer Science (FOCS'06), 2006.
Slides: Here are some slides on the LSH algorithm from a talk given by Piotr Indyk.
o Earlier algorithm for Euclidean space (2004): a good introduction to LSH, and the description of affairs as of 2005, is in the following book chapter
Locality-Sensitive Hashing Scheme Based on p-Stable Distributions (by Alexandr Andoni, Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab Mirrokni), appearing in the book Nearest Neighbor Methods in Learning and Vision: Theory and Practice, by T. Darrell and P. Indyk and G. Shakhnarovich (eds.), MIT Press, 2006.
See also the book introduction for a smooth introduction to NN problem and LSH.
o Original LSH algorithm (1999): the best algorithm for the Hamming space remains the one described, e.g, in [GIM'99] paper.
* Implementation of LSH: Currently, we only have an alpha-version available - the E2LSH package. The code is based on the algorithm described in the book chapter from above. If you are interested in trying the code out, please send an email to Alex Andoni at:
email
You can also download the manual for the code to see its functionality. The code has been developed by Alex Andoni.
分享到:
相关推荐
introduce the Locality-sensitive hashing algorithm which is a popular method applied in clustering and KNN
matlab编程代码字体颜色 个人使用资源汇总 图像传统特征提取 , C++ training ...Algorithm and Implementation. , Non-Metric Space Library (NMSLIB): A similarity search library and a toolkit for
E2LSH(E2-Local Sensitive Hashing)是一种高效的数据索引和近似最近邻搜索算法,常被应用于大规模图像检索等高维数据处理场景。它基于局部敏感哈希(Locality Sensitive Hashing, LSH)理论,旨在减少高维数据的...
LSH(Locality Sensitive Hashing,局部敏感哈希)是一种在大数据集上进行近似相似性搜索的技术,尤其适用于高维数据。该算法的主要思想是将高维数据映射到低维空间,使得相似的数据在哈希后有更高的概率落入相同的...
LSH(Locality Sensitive Hashing)是一种用于解决高维空间近邻问题的近似算法。LSH通过使用哈希函数将高维数据映射到低维空间,并在这个过程中尽可能保持原始空间中相似数据点在低维空间中的近距离。LSH被广泛应用...
LSH文件LSH文件
### e2lsh的学习手册知识点总结 #### 一、E2LSH简介 **短回答:** E2LSH(Exact Euclidean LSH)是一种针对高维欧式空间近邻问题提供随机化解决方案的软件包。在对数据集进行预处理后,E2LSH能够以次线性时间响应...
LSH(Locality Sensitive Hashing,局部敏感哈希)是一种在大数据集上进行近似最近邻搜索(Approximate Nearest Neighbor Search, ANNS)的高效算法。在图像数据处理中,它尤其重要,因为图像数据往往具有高维度,...
汉明距离(Hamming Distance)和局部敏感哈希(Locality Sensitive Hashing, LSH)是计算机科学中,特别是信息检索和数据挖掘领域里重要的概念。本文将深入探讨这两个概念,以及它们在图像检索中的应用。 首先,...
局部敏感哈希(Locality Sensitive Hashing, LSH)是一种在大数据集上进行近似最近邻搜索(Approximate Nearest Neighbor, ANN)的有效方法。它由Gionis等人于1999年提出,主要应用于高维空间数据的相似性检索。在...
**基于欧式距离的LSH(E2LSH)** 在数据挖掘、机器学习以及大数据处理领域,近似最近邻搜索(Approximate Nearest Neighbor, ANN)是一个常见的问题,用于快速找到与查询点最相似的数据点。传统的搜索方法,如全库...
LSH(Locality Sensitive Hashing,局部敏感哈希)是一种在大数据集上进行近似最近邻搜索(Approximate Nearest Neighbor Search, ANNS)的高效算法。在信息技术领域,尤其是在机器学习、图像处理和数据挖掘中,快速...
LSH(Locality Sensitive Hashing,位置敏感哈希)是一种在高维空间中快速查找相似数据的近似算法。这种技术主要用于大数据集中的近似最近邻搜索(Approximate Nearest Neighbor, ANN),尤其适用于处理高维向量,如...
在IT领域,特别是数据挖掘和计算机视觉中,快速近似最近邻(Fast Library for Approximate Nearest Neighbors,简称FLANN)和局部敏感哈希(Locality Sensitive Hashing,简称LSH)是两种非常重要的算法。...
LSH,全称为Locality Sensitive Hashing(局部敏感哈希),是一种在大数据集上进行相似性搜索的有效方法。在IT行业中,特别是在数据挖掘、搜索引擎优化、图像识别等领域,LSH被广泛应用于近似最近邻搜索...
《基于p-stable分布的LSH算法在图像检索中的应用》 在计算机科学尤其是数据挖掘领域,局部敏感哈希(Local Sensitive Hash, LSH)是一种广泛应用的技术,它主要用于高效地处理大规模数据集中的相似性查找问题。在...
【基于LSH索引的图像搜索】 在当前的数字化时代,图像数据的快速增长使得传统的文本搜索方式不再适用。为了应对这一挑战,基于内容的图像检索(CBIR)应运而生,它允许用户通过图像本身来查找类似图像,而不是依赖...
### LSH算法简介 LSH(Locality Sensitive Hashing,局部敏感散列)是一种用于解决高维空间中近似最近邻搜索问题的有效方法。它主要用于处理大规模数据集中的相似性搜索任务,如图片过滤系统中寻找与特定图片相似的...
局部敏感哈希(Locality Sensitive Hashing,简称LSH)是一种在大数据集中高效查找相似数据的算法。它主要用于近似最近邻搜索(Approximate Nearest Neighbor, ANN),尤其是在高维空间中的应用,如计算机视觉、自然...