`

完整的scheme amb求值器

阅读更多
    在第二个分析求值器的基础上实现了完整的amb求值器,在drscheme选择R5RS标准下测试通过。注意,在show details面板里将disallow redefinition of initial bindings选项去掉,允许重定义过程。给出完整代码:
<!---->(define apply-in-underlying-scheme apply)
(define (amb
-eval exp env succeed fail)
  ((analyze exp) env succeed fail))
(define (analyze exp)
  (cond ((self
-evaluating? exp)
         (analyze
-self-evaluating exp))
        ((quoted? exp)
         (analyze
-quoted exp))
        ((variable? exp)
         (analyze
-variable exp))
        ((assignment? exp)
         (analyze
-assignment exp))
        ((definition? exp)
         (analyze
-definition exp))
        ((
if? exp)
         (analyze
-if exp))
        ((
lambda? exp)
         (analyze
-lambda exp))
        ((begin? exp)
         (analyze
-sequence (begin-actions exp)))
        ((cond? exp)
         (analyze (cond
->if exp)))
        ((let? exp) (analyze (let
->combination exp)))
        ((amb? exp) (analyze
-amb exp))
        ((unless? exp) (analyze (unless
->if exp)))
        ((application? exp)(analyze
-application exp))
        (
else
           (error 
"Unknown expression type--ANALYZE" exp))))
(define (self
-evaluating? exp)
  (cond ((number? exp) 
#t)
        ((string? exp) #t)
        (else
           
#f)))
(define (variable? exp) (symbol? exp))
(define (quoted? exp)
  (tagged
-list? exp 'quote))
(define (text-of-quotation exp)
  (cadr exp))
(define (tagged
-list? exp tag)
  (
if (pair? exp)
      (eq? (car exp) tag)
      
#f))
(define (assignment? exp)
  (tagged
-list? exp 'set!))
(define (assignment-variable exp)
  (cadr exp))
(define (assignment
-value exp)
  (caddr exp))
(define (definition? exp)
  (tagged
-list? exp 'define))
(define (definition-variable exp)
  (
if (symbol? (cadr exp))
      (cadr exp)
      (caadr exp)))
(define (definition
-value exp)
  (
if (symbol? (cadr exp))
      (caddr exp)
      (make
-lambda (cdadr exp)
                   (cddr exp))))
(define (
lambda? exp)
  (tagged
-list? exp 'lambda))
(define (lambda-parameters exp)
  (cadr exp))
(define (
lambda-body exp)
  (cddr exp))
(define (make
-lambda parameters body)
  (cons 
'lambda (cons parameters body)))
(define (if? exp)
  (tagged
-list? exp 'if))
(define (if-predicate exp) (cadr exp))
(define (
if-consequent exp) (caddr exp))
(define (
if-alternative exp)
  (
if (not (null? (cdddr exp)))
      (cadddr exp)
      
'false))
(define (make-if predicate consequent alternative)
  (list 
'if predicate consequent alternative))
(define (begin? exp)
  (tagged
-list? exp 'begin))
(define (begin-actions exp) (cdr exp))
(define (last
-exp? exps) (null? (cdr exps)))
(define (first
-exp exps) (car exps))
(define (rest
-exps exps) (cdr exps))
(define (make
-begin seq) (cons 'begin seq))
(define (sequence->exp seq)
  (cond ((null? seq) seq)
        ((last
-exp? seq) (first-exp seq))
        (
else
           (make
-begin seq))))
(define (application? exp)
  (pair? exp))
(define (operator exp)
  (car exp))
(define (operands exp)
  (cdr exp))
(define (no
-operands? ops) (null? ops))
(define (first
-operand ops) (car ops))
(define (rest
-operands ops) (cdr ops))
(define (let? exp)
  (tagged
-list? exp 'let))
(define (make-define var parameters body)
  (list 
'define (cons var parameters) body))
(define (let->combination exp)
  (
if (symbol? (cadr exp))
      (let ((var (cadr exp))
            (vars (map car (caddr exp)))
            (vals (map cadr (caddr exp)))
            (pairs (caddr exp))
            (body (cdddr exp)))
        (cons (make
-lambda vars (list (make-define var vars body) body)) vals))
      (let ((vars (map car (cadr exp)))
            (vals (map cadr (cadr exp)))
            (body (cddr exp)))
              (cons (make
-lambda vars body) vals))))
(define (cond? exp)
  (tagged
-list? exp 'cond))
(define (cond-clauses exp) (cdr exp))
(define (cond
-else-clauses? clause)
  (eq? (cond
-predicate clause) 'else))
(define (cond-extended-clauses? clause)
  (
and (> (length clause) 2) (eq? (cadr clause) '=>)))
(define (extended-cond-test clause)
  (car clause))
(define (extended
-cond-recipient clause)
  (caddr clause)) 
(define (cond
-predicate clause) (car clause))
(define (cond
-actions clause) (cdr clause))
(define (cond
->if exp)
  (expand
-clauses (cond-clauses exp)))
(define (expand
-clauses clauses)
  (
if (null? clauses)
      
'false
      (let ((first (car clauses))
            (rest (cdr clauses)))
        (cond ((cond
-else-clauses? first)
                (
if (null? rest)
                    (sequence
->exp (cond-actions first))
                    (error 
"else clause is not LAST" clauses)))
              ((cond
-extended-clauses? first)
               (make
-if
                   (extended
-cond-test first)
                    (list
                      (extended
-cond-recipient first)
                      (extended
-cond-test first))
                      (expand
-clauses rest)))
              (
else
               (make
-if (cond-predicate first)
                        (sequence
->exp (cond-actions first))
                        (expand
-clauses rest)))))))
(define (unless? exp)
  (tagged
-list? exp 'unless))
(define (unless->if exp)
  (make
-if (cadr exp) (cadddr exp) (caddr exp)))
(define (true? exp)
  (
or (eq? exp 'true) exp))
(define (false? exp)
  (
or (eq? exp 'false) exp))
(define (make-procedure parameters body env)
  (list 
'procedure parameters body env))
(define (compound-procedure? p)
  (tagged
-list? p 'procedure))
(define (procedure-parameters p)
  (cadr p))
(define (procedure
-body p)
  (caddr p))
(define (procedure
-environment p)
  (cadddr p))
(define (amb? exp)
  (tagged
-list? exp 'amb))
(define (amb-choices exp) (cdr exp))
(define (enclosing
-environment env) (cdr env))
(define (first
-frame env) (car env))
(define the
-empty-environment '())
(define (make-frame variables values)
  (cons variables values))
(define (frame
-variables f)
  (car f))
(define (frame
-values f)
  (cdr f))
(define (add
-binding-to-frame! var val frame)
  (set
-car! frame (cons var (car frame)))
  (set
-cdr! frame (cons val (cdr frame))))
(define (extend
-environment vars vals base-env)
  (
if (= (length vars) (length vals))
      (cons (make
-frame vars vals) base-env)
      (
if (< (length vars) (length vals))
          (error 
"Too many arguments supplied" vars vals)
          (error 
"Too few arguments supplied" vars vals))))
(define (lookup
-variable-value var env)
  (define (env
-loop env)
    (define (scan vars vals)
      (cond ((null? vars)
             (env
-loop (enclosing-environment env)))
            ((eq? var (car vars))
             (car vals))
            (
else
              (scan (cdr vars) (cdr vals)))))
    (
if (eq? env the-empty-environment)
        (error 
"Unbound variable" var)
        (let ((frame (first
-frame env)))
          (scan (frame
-variables frame)
                (frame
-values frame)))))
  (env
-loop env))
(define (set
-variable-value! var val env)
  (define (env
-loop env)
    (define (scan vars vals)
      (cond ((null? vars)
             (env
-loop (enclosing-environment env)))
            ((eq? var (car vars))
             (set
-car! vals val))
            (
else
              (scan (cdr vars) (cdr vals)))))
    (
if (eq? env the-empty-environment)
        (error 
"Unbound variable --SET!" var)
        (let ((frame (first
-frame env)))
          (scan (frame
-variables frame)
                (frame
-values frame)))))
  (env
-loop env))
(define (define
-variable! var val env)
  (let ((frame (first
-frame env)))
    (define (scan vars vals)
      (cond ((null? vars)
             (add
-binding-to-frame! var val frame))
            ((eq? (car vars) var)
             (set
-car! vals val))
            (
else
               (scan (cdr vars) (cdr vals)))))
    (scan (frame
-variables frame)
          (frame
-values frame))))
(define (primitive
-procedure? p)
  (tagged
-list? p 'primitive))
(define (primitive-implementation proc) (cadr proc))
(define primitive
-procedures
  (list (list 
'car car) 
        (list 'cdr cdr)
        (list 'list list)
        (list 'eq? eq?)
        (list 'cons cons)
        (list 'null? null?)
        (list '+ +)
        (list '- -)
        (list '* *)
        (list '/ /)
        (list '< <)
        (list '> >)
        (list '= =)
        (list 'not not)
        (list 'abs abs)
        (list 'assoc assoc)
        (list 'cadr cadr)
        (list 'cadr caddr)
        (list 'display display)
        (list 'newline newline)
        (list 'map map)))
(define (primitive-procedure-names)
  (map car primitive
-procedures)
  )
(define (primitive
-procedure-objects)
  (map (
lambda(proc) (list 'primitive (cadr proc))) primitive-procedures))
(define (setup-environment)
  (let ((initial
-env
           (extend
-environment (primitive-procedure-names)
                               (primitive
-procedure-objects)
                               the
-empty-environment)))
    (define
-variable! 'true #t initial-env)
    (define-variable! 'false #f initial-env)
    initial-env))
(define the
-global-environment (setup-environment))
(define (apply
-primitive-procedure proc args)
  (apply
-in-underlying-scheme (primitive-implementation proc) args))
(define input
-prompt ";;; AMB-Eval input:")
(define out
-prompt ";;; AMB-Eval value:")
(define (prompt
-for-input string)
  (newline)
  (newline)
  (display string)
  (newline))
(define (announce
-output string)
  (newline)
  (display string)
  (newline))
(define (user
-print object)
  (
if (compound-procedure? object)
      (display (list 
'compound-procedure
                     (procedure-parameters object)
                     (procedure
-body object)
                     
'<procedure-env>))
      (display object)))
(define (drive
-loop)
  (define (internal
-loop try-again)
    (prompt
-for-input input-prompt)
    (let ((input (read)))
      (
if (eq? input 'try-again)
          (try-again)
          (begin
            (newline)
            (display 
"Starting a new problem ")
            (amb
-eval input the-global-environment
                    (
lambda(val next-alternative)
                      (announce
-output out-prompt)
                      (user
-print val)
                      (internal
-loop next-alternative))
                    (
lambda()
                      (announce
-output
                       
";;;There are no more values of")
                      (user
-print input)
                      (drive
-loop)))))))
  (internal
-loop
   (
lambda()
     (newline)
     (display 
";;;There is no current problem")
     (drive
-loop))))
   
    
;接下来是分析过程
(define (analyze
-self-evaluating exp)
  (
lambda(env succeed fail) (succeed exp fail)))
(define (analyze
-variable exp)
  (
lambda(env succeed fail) (succeed (lookup-variable-value exp env) fail)))
(define (analyze
-quoted exp)
  (let ((qval (text
-of-quotation exp)))
    (
lambda(env succeed fail) (succeed qval fail))))
(define (analyze
-assignment exp)
  (let ((var (assignment
-variable exp))
        (vproc (analyze (assignment
-value exp))))
    (
lambda(env succeed fail)
        (vproc env
               (
lambda(val fail2)
                      (let ((old
-value (lookup-variable-value var env)))
                          (set
-variable-value! var val env) 
                          (succeed 
'ok 
                                   (lambda()
                                     (set
-variable-value! var old-value env)
                                     (fail2)))))
               fail))))
                         
(define (analyze
-definition exp)
  (let ((var (definition
-variable exp))
        (vproc (analyze (definition
-value exp))))
    (
lambda(env succeed fail)
      (vproc env
             (
lambda(vproc-value fail2)
                   (define
-variable! var vproc-value env)
                   (succeed 
'ok fail2))
             fail))))
(define (analyze
-if exp)
  (let ((pproc (analyze (
if-predicate exp)))
        (cproc (analyze (
if-consequent exp)))
        (aproc (analyze (
if-alternative exp))))
    (
lambda(env succeed fail)
      (pproc env (
lambda(pred-value fail2)
        (
if (true? pred-value)
            (cproc env succeed fail2)
            (aproc env succeed fail2)))
             fail))))
(define (analyze
-lambda exp)
  (let ((vars (
lambda-parameters exp))
        (bproc (analyze
-sequence (lambda-body exp))))
    (
lambda(env succeed fail) (succeed (make-procedure vars bproc env) fail))))
(define (analyze
-sequence exps)
  (define (sequentially proc1 proc2)
    (
lambda(env succeed fail)
        (proc1 env
               (
lambda(a-value fail2) (proc2 env succeed fail2))
               fail)))
  (define (loop first
-proc rest-proc)
    (
if (null? rest-proc)
        first
-proc
        (loop (sequentially first
-proc (car rest-proc))
              (cdr rest
-proc))))
  (let ((procs (map analyze exps))
        )
    (
if
分享到:
评论

相关推荐

    安邦信AMB100系列通用变频器说明书.pdf

    **安邦信AMB100系列通用变频器说明书** **前言** 安邦信公司推出的AMB100系列通用变频器是一款高效、可靠的工业自动化设备,旨在为各种电机提供精确的速度和扭矩控制。本说明书是用户正确操作、安装、运行、维护和...

    变频器说明书系列-AMB300_15037162627.pdf

    AMB300系列通用变频器是一款应用高性能矢量控制或转矩控制技术的变频器,具备强大的控制方式,可以满足不同的工业需求。其技术性能特性包括开环矢量控制(SVC)、V/F控制、开环转矩控制等,具有高启动转矩、宽调速...

    变频器说明书系列-AMB100_15037162627.pdf

    AMB100系列变频器是一种利用先进矢量控制和转矩控制技术的通用变频器。该变频器型号及其技术规格,以及控制方式、功能代码等在使用说明书中有详细的介绍。 控制方式方面,AMB100系列变频器支持开环矢量控制(SVC)...

    AMB变频器规格尺寸说明(1212).pdf

    AMB变频器是一种用于交流电机调速控制的电力电子设备,它能够将交流...以上知识点是根据提供的文件内容所提炼的,由于文件内容存在OCR扫描错误和部分文字遗漏,可能需要对照实际的变频器说明书以获取完整准确的信息。

    AMB-G7/P7系列通用变频器使用说明书.pdf

    安邦信公司生产的AMB-G7/P7系列通用变频器是一款针对工业自动化领域设计的高性能变频器,它是上一代AMB-G5系列的升级产品。AMB-G7/P7系列变频器不仅承袭了前代产品的优秀功能,更在此基础上增加了一些新的特性,如...

    AMBITION安邦信AMB-HVI高压系列变频器说明书.rar

    安邦信公司作为电气设备制造领域的佼佼者,其AMB-HVI高压系列变频器产品一直是市场上的明星产品。随着技术的不断进步,该系列变频器所展现的高效节能、精准控制电机速度的特点,不仅提升了生产效率,更在节能降耗...

    安邦信AMB500F\AMB800F产品样本.jpg

    安邦信AMB500F\AMB800F产品样本jpg,安邦信公司产品宣传折页。欢迎各位下载。

    AMBITION安邦信AMB-E11系列变频器说明书.rar

    标题"AMBITION安邦信AMB-E11系列变频器说明书.rar"指出这是一份关于AMB-E11系列变频器的详细说明书,文档以RAR压缩格式提供,通常包含多页或者多个文件,便于用户下载和存储。"安邦信"是一家知名的变频器生产商,而...

    AMB500F与AMB800F的区别.pdf.pdf

    在探讨AM500F与AMB800F两款变频器的区别之前,首先需了解变频器的基本概念。变频器是一种电力控制设备,主要作用是通过改变交流电的频率来控制交流电动机的速度。在工业自动化领域,变频器是实现电机变速运行、节能...

    变频器说明书系列-AMB600.pdf

    AMB600系列变频器是一种通用型的变频器产品,它集成了先进的矢量控制和转矩控制技术,以确保电机运行的效率和精确度。本系列变频器在各类工业应用中,如泵、风机、输送带、数控机床等领域中被广泛应用。 在使用变频...

    安邦信AMB100系列通用变频器通过PID功能实现恒压供水的基本方法.docx

    安邦信AMB100系列通用变频器是一种高性能、低噪音且多功能的变频器,适用于各种工业环境中的调速应用。在恒压供水系统中,它通过内置的PID(比例-积分-微分)闭环控制功能,可以有效地控制电机速度,进而维持供水...

    安邦信_AMB300说明书.pdf

    安邦信_AMB300说明书pdf,安邦信_AMB300说明书  一、安装现场 安装现场应满足如下条件: 1、 室内通风良好。 2、 环境温度 -10°C~ 40°C,( 40°C~50°C 时请降额使用) 3、 尽量避免高温多湿,湿度小于 90%RH,无...

    安邦信 AMB-E11无速度传感器矢量型变频器通讯协议说明书.rar

    《安邦信 AMB-E11无速度传感器矢量型变频器通讯协议详解》 在工业自动化领域,变频器扮演着至关重要的角色,它能够调节电机的转速和扭矩,实现高效节能运行。安邦信公司的AMB-E11无速度传感器矢量型变频器就是其中...

    变频器说明书大全系列-AMB-V11系列说明书.rar

    AMB-V11系列变频器是其中的一款高性能产品,它结合了先进的控制技术和高可靠性设计,旨在为用户提供高效、稳定且易于操作的解决方案。本系列说明书详细阐述了AMB-V11系列变频器的特性和使用方法,帮助用户充分理解和...

    AMB100说明书

    AMB100说明书

    安邦信AMB-V11.rar

    在IT领域,工业自动化设备是现代生产流程中的重要组成部分,其中安邦信AMB-V11是一款广泛应用的控制器。本文将深入解析这款产品的核心特性、功能以及使用方法。 安邦信是一家专注于工业自动化控制系统的知名企业,...

    AMB说明书 很好用的

    无论AMB是指一个特定的变频器型号,还是与变频器配合使用的控制设备,用户都能通过这两份资料实现对产品的深入了解和熟练操作。特别是在安装、设置和维护AMB产品时,手册和网站提供的信息将成为用户手中不可或缺的...

Global site tag (gtag.js) - Google Analytics