`

重温hadoop(3)--序列化

 
阅读更多

Hadoop的序列化机制特征:

  • 紧凑:带宽是hadoop集群中最稀缺的资源,一个紧凑的序列化机制可以充分利用带宽。
  • 快速:mapreduce会大量的使用序列化机制。因此,要尽可能减少序列化开销。
  • 可扩张:序列化机制需要可定制
  • 互操作:可以支持不同开发语言间的通信。

    java本身的序列化,将要序列化的类,类签名、类的所有非暂态和非静态成员的值,以及所有的父类都要写入,导致序列化的对象过于充实。可能比原来扩大了几十上百倍。

 

   由上面的条件,hadoop自定义了序列化机制,引入org.apache.hadoop.io.Writable

 

/**
 * A serializable object which implements a simple, efficient, serialization 
 * protocol, based on {@link DataInput} and {@link DataOutput}.
 *
 * <p>Any <code>key</code> or <code>value</code> type in the Hadoop Map-Reduce
 * framework implements this interface.</p>
 * 
 * <p>Implementations typically implement a static <code>read(DataInput)</code>
 * method which constructs a new instance, calls {@link #readFields(DataInput)} 
 * and returns the instance.</p>
 * 
 * <p>Example:</p>
 * <p><blockquote><pre>
 *     public class MyWritable implements Writable {
 *       // Some data     
 *       private int counter;
 *       private long timestamp;
 *       
 *       public void write(DataOutput out) throws IOException {
 *         out.writeInt(counter);
 *         out.writeLong(timestamp);
 *       }
 *       
 *       public void readFields(DataInput in) throws IOException {
 *         counter = in.readInt();
 *         timestamp = in.readLong();
 *       }
 *       
 *       public static MyWritable read(DataInput in) throws IOException {
 *         MyWritable w = new MyWritable();
 *         w.readFields(in);
 *         return w;
 *       }
 *     }
 * </pre></blockquote></p>
 */
public interface Writable {
  /** 
   * Serialize the fields of this object to <code>out</code>.
   * 输出(序列化)对象到流中
   * @param out <code>DataOuput</code> to serialize this object into.
   * @throws IOException
   */
  void write(DataOutput out) throws IOException;

  /** 
   * Deserialize the fields of this object from <code>in</code>.  
   * 从流中读取(反序列化)对象,为了效率请尽可能服用现有的对象
   * <p>For efficiency, implementations should attempt to re-use storage in the 
   * existing object where possible.</p>
   * 
   * @param in <code>DataInput</code> to deseriablize this object from.
   * @throws IOException
   */
  void readFields(DataInput in) throws IOException;
}

 

 

    hadoop序列化机制还包括几个重要的接口org.apache.hadoop.io.WritableComparable,org.apache.hadoop.io.WritableComparator,RawComparator

org.apache.hadoop.io.WritableComparable:继承java.lang.Comparable,来提供类型比较。

 

org.apache.hadoop.io.RawComparator:继承java.util.Comparator,允许去比较未被序列化为对象的记录,省去了创建对象的所有开销。

 

java.util.Comparator和的java.lang.Comparable区别可见 http://lavasoft.blog.51cto.com/62575/68380

 

 每个java基本类型都对应Writable封装。

 

      ObjectWritable可应用在需要序列化不同类型的对象到某一个字段,也可用在hadoop远程过程调用中参数的序列化和反序列化。

     ObjectWritable的实现:

              有三个成员变量,包括被封装的对象实例instance、该对象运行时类的Class对象和Configuration对象。

     ObjectWritable的write方法调用的是静态方法ObjectWritable .writeObject()该方法可以往DataOutput接口中写入各种java对象。

/** Write a {@link Writable}, {@link String}, primitive type, or an array of
   * the preceding. */
  public static void writeObject(DataOutput out, Object instance,
                                 Class declaredClass, 
                                 Configuration conf) throws IOException {

    if (instance == null) {                       // null 空
      instance = new NullInstance(declaredClass, conf);
      declaredClass = Writable.class;
    }

    UTF8.writeString(out, declaredClass.getName()); // always write declared

    if (declaredClass.isArray()) {                // array 数组
      int length = Array.getLength(instance);
      out.writeInt(length);
      for (int i = 0; i < length; i++) {
        writeObject(out, Array.get(instance, i),
                    declaredClass.getComponentType(), conf);
      }
      
    } else if (declaredClass == String.class) {   // String 字符串
      UTF8.writeString(out, (String)instance);
      
    } else if (declaredClass.isPrimitive()) {     // primitive type 基本类型

      if (declaredClass == Boolean.TYPE) {        // boolean
        out.writeBoolean(((Boolean)instance).booleanValue());
      } else if (declaredClass == Character.TYPE) { // char
        out.writeChar(((Character)instance).charValue());
      } else if (declaredClass == Byte.TYPE) {    // byte
        out.writeByte(((Byte)instance).byteValue());
      } else if (declaredClass == Short.TYPE) {   // short
        out.writeShort(((Short)instance).shortValue());
      } else if (declaredClass == Integer.TYPE) { // int
        out.writeInt(((Integer)instance).intValue());
      } else if (declaredClass == Long.TYPE) {    // long
        out.writeLong(((Long)instance).longValue());
      } else if (declaredClass == Float.TYPE) {   // float
        out.writeFloat(((Float)instance).floatValue());
      } else if (declaredClass == Double.TYPE) {  // double
        out.writeDouble(((Double)instance).doubleValue());
      } else if (declaredClass == Void.TYPE) {    // void
      } else {
        throw new IllegalArgumentException("Not a primitive: "+declaredClass);
      }
    } else if (declaredClass.isEnum()) {         // enum 枚举
      UTF8.writeString(out, ((Enum)instance).name());
    } else if (Writable.class.isAssignableFrom(declaredClass)) { // Writable Writable的子类
      UTF8.writeString(out, instance.getClass().getName());
      ((Writable)instance).write(out);

    } else {
      throw new IOException("Can't write: "+instance+" as "+declaredClass);
    }
  }

     

    和输出对应的调用的是org.apache.hadoop.io.ObjectWritable.readObject(DataInput in, ObjectWritable objectWritable, Configuration conf)

   

 /** Read a {@link Writable}, {@link String}, primitive type, or an array of
   * the preceding. */
  @SuppressWarnings("unchecked")
  public static Object readObject(DataInput in, ObjectWritable objectWritable, Configuration conf)
    throws IOException {
    String className = UTF8.readString(in);
    Class<?> declaredClass = PRIMITIVE_NAMES.get(className);
    if (declaredClass == null) {
      try {
        declaredClass = conf.getClassByName(className);
      } catch (ClassNotFoundException e) {
        throw new RuntimeException("readObject can't find class " + className, e);
      }
    }    

    Object instance;
    
    if (declaredClass.isPrimitive()) {            // primitive types

      if (declaredClass == Boolean.TYPE) {             // boolean
        instance = Boolean.valueOf(in.readBoolean());
      } else if (declaredClass == Character.TYPE) {    // char
        instance = Character.valueOf(in.readChar());
      } else if (declaredClass == Byte.TYPE) {         // byte
        instance = Byte.valueOf(in.readByte());
      } else if (declaredClass == Short.TYPE) {        // short
        instance = Short.valueOf(in.readShort());
      } else if (declaredClass == Integer.TYPE) {      // int
        instance = Integer.valueOf(in.readInt());
      } else if (declaredClass == Long.TYPE) {         // long
        instance = Long.valueOf(in.readLong());
      } else if (declaredClass == Float.TYPE) {        // float
        instance = Float.valueOf(in.readFloat());
      } else if (declaredClass == Double.TYPE) {       // double
        instance = Double.valueOf(in.readDouble());
      } else if (declaredClass == Void.TYPE) {         // void
        instance = null;
      } else {
        throw new IllegalArgumentException("Not a primitive: "+declaredClass);
      }

    } else if (declaredClass.isArray()) {              // array
      int length = in.readInt();
      instance = Array.newInstance(declaredClass.getComponentType(), length);
      for (int i = 0; i < length; i++) {
        Array.set(instance, i, readObject(in, conf));
      }
      
    } else if (declaredClass == String.class) {        // String
      instance = UTF8.readString(in);
    } else if (declaredClass.isEnum()) {         // enum
      instance = Enum.valueOf((Class<? extends Enum>) declaredClass, UTF8.readString(in));
    } else {                                      // Writable
      Class instanceClass = null;
      String str = "";
      try {
        str = UTF8.readString(in);
        instanceClass = conf.getClassByName(str);
      } catch (ClassNotFoundException e) {
        throw new RuntimeException("readObject can't find class " + str, e);
      }
      //利用instanceClass创建WritableFactories
      Writable writable = WritableFactories.newInstance(instanceClass, conf);
      writable.readFields(in);
      instance = writable;

      if (instanceClass == NullInstance.class) {  // null
        declaredClass = ((NullInstance)instance).declaredClass;
        instance = null;
      }
    }

    if (objectWritable != null) {                 // store values
      objectWritable.declaredClass = declaredClass;
      objectWritable.instance = instance;
    }

    return instance;

 

 //保存了类型和WritableFactories工厂的对应关系
 private static final HashMap<Class, WritableFactory> CLASS_TO_FACTORY =
    new HashMap<Class, WritableFactory>();

  /** Create a new instance of a class with a defined factory. */
  public static Writable newInstance(Class<? extends Writable> c, Configuration conf) {
    WritableFactory factory = WritableFactories.getFactory(c);
    if (factory != null) {
      Writable result = factory.newInstance();
      if (result instanceof Configurable) {
        ((Configurable) result).setConf(conf);
      }
      return result;
    } else {
      //采用传统的反射工具,创建对象
      return ReflectionUtils.newInstance(c, conf);
    }
  }

 

    

    

 

 

分享到:
评论

相关推荐

    Hadoop 3.x(MapReduce)----【Hadoop 序列化】---- 代码

    Hadoop 3.x(MapReduce)----【Hadoop 序列化】---- 代码 Hadoop 3.x(MapReduce)----【Hadoop 序列化】---- 代码 Hadoop 3.x(MapReduce)----【Hadoop 序列化】---- 代码 Hadoop 3.x(MapReduce)----【Hadoop ...

    flink-shaded-hadoop-3-uber-3.1.1.7.1.1.0-565-9.0.jar.tar.gz

    在这个特定的兼容包中,我们可以看到两个文件:flink-shaded-hadoop-3-uber-3.1.1.7.1.1.0-565-9.0.jar(实际的兼容库)和._flink-shaded-hadoop-3-uber-3.1.1.7.1.1.0-565-9.0.jar(可能是Mac OS的元数据文件,通常...

    hadoop最新版本3.1.1全量jar包

    hadoop-annotations-3.1.1.jar hadoop-common-3.1.1.jar hadoop-mapreduce-client-core-3.1.1.jar hadoop-yarn-api-3.1.1.jar hadoop-auth-3.1.1.jar hadoop-hdfs-3.1.1.jar hadoop-mapreduce-client-hs-3.1.1.jar ...

    hadoop-eclipse-plugin1.2.1 and hadoop-eclipse-plugin2.8.0

    为了方便开发者在Eclipse或MyEclipse这样的集成开发环境中高效地进行Hadoop应用开发,Hadoop-Eclipse-Plugin应运而生。这个插件允许开发者直接在IDE中对Hadoop集群进行操作,如创建、编辑和运行MapReduce任务,极大...

    hbase-hadoop2-compat-1.2.12-API文档-中文版.zip

    赠送jar包:hbase-hadoop2-compat-1.2.12.jar; 赠送原API文档:hbase-hadoop2-compat-1.2.12-javadoc.jar; 赠送源代码:hbase-hadoop2-...人性化翻译,文档中的代码和结构保持不变,注释和说明精准翻译,请放心使用。

    hadoop插件apache-hadoop-3.1.0-winutils-master.zip

    3. **HDFS初始化**:使用`winutils.exe`初始化HDFS文件系统,创建NameNode和DataNode的数据目录,这通常涉及到创建一些特定的目录结构并设置相应的权限。 4. **配置文件**:修改`conf/core-site.xml`和`conf/hdfs-...

    hadoop-yarn-client-2.6.5-API文档-中文版.zip

    赠送jar包:hadoop-yarn-client-2.6.5.jar; 赠送原API文档:hadoop-yarn-client-2.6.5-javadoc.jar; 赠送源代码:hadoop-yarn-client-2.6.5-sources.jar; 赠送Maven依赖信息文件:hadoop-yarn-client-2.6.5.pom;...

    hadoop-mapreduce-client-jobclient-2.6.5-API文档-中文版.zip

    赠送jar包:hadoop-mapreduce-client-jobclient-2.6.5.jar; 赠送原API文档:hadoop-mapreduce-client-jobclient-2.6.5-javadoc.jar; 赠送源代码:hadoop-mapreduce-client-jobclient-2.6.5-sources.jar; 赠送...

    hadoop-eclipse-plugin-3.1.1.tar.gz

    Hadoop-Eclipse-Plugin 3.1.1是该插件的一个特定版本,可能包含了一些针对Hadoop 3.x版本的优化和修复,以确保与Hadoop集群的兼容性和稳定性。 6. **使用场景**: 这个插件主要适用于大数据开发人员,特别是那些...

    hadoop-auth-2.5.1-API文档-中文版.zip

    赠送jar包:hadoop-auth-2.5.1.jar; 赠送原API文档:hadoop-auth-2.5.1-javadoc.jar; 赠送源代码:hadoop-auth-2.5.1-sources.jar; 赠送Maven依赖信息文件:hadoop-auth-2.5.1.pom; 包含翻译后的API文档:hadoop...

    hadoop-eclipse-plugin三个版本的插件都在这里了。

    hadoop-eclipse-plugin-2.7.4.jar和hadoop-eclipse-plugin-2.7.3.jar还有hadoop-eclipse-plugin-2.6.0.jar的插件都在这打包了,都可以用。

    hadoop2.6-common-bin.zip

    3. `hadoop.exp`:这可能是一个导出文件,包含了Hadoop库对外公开的函数和符号信息。 4. `libwinutils.lib`:这是一个静态链接库文件,用于在Windows上编译和链接依赖于`winutils`的程序。 5. `hadoop.lib`:类似地...

    hadoop-eclipse-plugin-2.10.0.jar

    Eclipse集成Hadoop2.10.0的插件,使用`ant`对hadoop的jar包进行打包并适应Eclipse加载,所以参数里有hadoop和eclipse的目录. 必须注意对于不同的hadoop版本,` HADDOP_INSTALL_PATH/share/hadoop/common/lib`下的jar包...

    hadoop-eclipse-plugin-2.7.3和2.7.7

    hadoop-eclipse-plugin-2.7.3和2.7.7的jar包 hadoop-eclipse-plugin-2.7.3和2.7.7的jar包 hadoop-eclipse-plugin-2.7.3和2.7.7的jar包 hadoop-eclipse-plugin-2.7.3和2.7.7的jar包

    flink-shaded-hadoop-3下载

    flink-shaded-hadoop-3下载

    hadoop-common-2.6.0-bin-master.zip

    `hadoop-common-2.6.0-bin-master.zip` 是一个针对Hadoop 2.6.0版本的压缩包,特别适用于在Windows环境下进行本地开发和测试。这个版本的Hadoop包含了对Windows系统的优化,比如提供了`winutils.exe`,这是在Windows...

    apache-hadoop-3.1.3-winutils-master.zip

    在这个"apache-hadoop-3.1.3-winutils-master.zip"压缩包中,包含了在Windows环境下配置Hadoop HDFS客户端所需的组件,特别是`hadoop-winutils`和`hadoop.dll`这两个关键文件,它们对于在Windows系统上运行Hadoop...

    hadoop-eclipse-plugin-3.3.1.jar

    Ubuntu虚拟机HADOOP集群搭建eclipse环境 hadoop-eclipse-plugin-3.3.1.jar

    hbase-hadoop2-compat-1.1.3-API文档-中文版.zip

    赠送jar包:hbase-hadoop2-compat-1.1.3.jar; 赠送原API文档:hbase-hadoop2-compat-1.1.3-javadoc.jar; 赠送源代码:hbase-hadoop2-...人性化翻译,文档中的代码和结构保持不变,注释和说明精准翻译,请放心使用。

    hadoop3.3.0-winutils所有bin文件

    3. `yarn`: 用于管理和调度YARN(Yet Another Resource Negotiator)资源的命令行工具,YARN是Hadoop的第二代资源管理系统。 4. `mapred`: MapReduce的命令行工具,MapReduce是Hadoop的分布式计算模型,用于处理和...

Global site tag (gtag.js) - Google Analytics