JobConf mergeJob = CrawlDb.createJob(getConf(), crawlDb); //可以看到上一个MP的输出tempDir,就是这个MP的输入 FileInputFormat.addInputPath(mergeJob, tempDir); mergeJob.setReducerClass(InjectReducer.class); JobClient.runJob(mergeJob); CrawlDb.install(mergeJob, crawlDb);
public void configure(JobConf job) { interval = job.getInt("db.fetch.interval.default", 2592000); scoreInjected = job.getFloat("db.score.injected", 1.0f); overwrite = job.getBoolean("db.injector.overwrite", false); update = job.getBoolean("db.injector.update", false); }
主要就是过滤和规范化
public void map(Text key, CrawlDatum value, OutputCollector<Text, CrawlDatum> output, Reporter reporter) throws IOException { String url = key.toString(); // https://issues.apache.org/jira/browse/NUTCH-1101 check status first, cheaper than normalizing or filtering if (url404Purging && CrawlDatum.STATUS_DB_GONE == value.getStatus()) { url = null; } if (urlNormalizers) { try { url = normalizers.normalize(url, scope); // normalize the url } catch (Exception e) { LOG.warn("Skipping " + url + ":" + e); url = null; } } if (url != null && urlFiltering) { try { url = filters.filter(url); // filter the url } catch (Exception e) { LOG.warn("Skipping " + url + ":" + e); url = null; } } if (url != null) { // if it passes newKey.set(url); // collect it output.collect(newKey, value); } }
public static JobConf createJob(Configuration config, Path crawlDb) throws IOException { //生成输出目录 Path newCrawlDb = new Path(crawlDb, Integer.toString(new Random().nextInt(Integer.MAX_VALUE))); JobConf job = new NutchJob(config); job.setJobName("crawldb " + crawlDb); Path current = new Path(crawlDb, CURRENT_NAME); if (FileSystem.get(job).exists(current)) { FileInputFormat.addInputPath(job, current); } job.setInputFormat(SequenceFileInputFormat.class); job.setMapperClass(CrawlDbFilter.class); job.setReducerClass(CrawlDbReducer.class); FileOutputFormat.setOutputPath(job, newCrawlDb); job.setOutputFormat(MapFileOutputFormat.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(CrawlDatum.class); // https://issues.apache.org/jira/browse/NUTCH-1110 //hadoop的配置,是否生成job运行成功文件 job.setBoolean("mapreduce.fileoutputcommitter.marksuccessfuljobs", false); return job; }
public void reduce(Text key, Iterator<CrawlDatum> values, OutputCollector<Text, CrawlDatum> output, Reporter reporter) throws IOException { boolean oldSet = false; boolean injectedSet = false; while (values.hasNext()) { CrawlDatum val = values.next(); //判断url是新的还是已抓取过的 if (val.getStatus() == CrawlDatum.STATUS_INJECTED) { injected.set(val); injected.setStatus(CrawlDatum.STATUS_DB_UNFETCHED); injectedSet = true; } else { old.set(val); oldSet = true; } } CrawlDatum res = null; /** * Whether to overwrite, ignore or update existing records * @see https://issues.apache.org/jira/browse/NUTCH-1405 */ // Injected record already exists and overwrite but not update //存在,重写,但不更新 if (injectedSet && oldSet && overwrite) { res = injected; if (update) { LOG.info(key.toString() + " overwritten with injected record but update was specified."); } } // Injected record already exists and update but not overwrite //存在更新,但不重写的情况 if (injectedSet && oldSet && update && !overwrite) { res = old; old.putAllMetaData(injected); old.setScore(injected.getScore() != scoreInjected ? injected.getScore() : old.getScore()); old.setFetchInterval(injected.getFetchInterval() != interval ? injected.getFetchInterval() : old.getFetchInterval()); } // Old default behaviour if (injectedSet && !oldSet) { res = injected; } else { res = old; } output.collect(key, res); } }
基本就是将之前处理的数据汇总,判断是否对历史数据更新。
public static void install(JobConf job, Path crawlDb) throws IOException { boolean preserveBackup = job.getBoolean("db.preserve.backup", true); Path newCrawlDb = FileOutputFormat.getOutputPath(job); FileSystem fs = new JobClient(job).getFs(); Path old = new Path(crawlDb, "old"); Path current = new Path(crawlDb, CURRENT_NAME); if (fs.exists(current)) { if (fs.exists(old)) fs.delete(old, true); fs.rename(current, old); } fs.mkdirs(crawlDb); fs.rename(newCrawlDb, current); if (!preserveBackup && fs.exists(old)) fs.delete(old, true); Path lock = new Path(crawlDb, LOCK_NAME); LockUtil.removeLockFile(fs, lock); }
CrawlDbFilter主要是对url进行过滤和正规化。
CrawlDbReducer主要是用来聚合相同url(老的与新产生的)的,这东东写得很复杂,下面来分析一下其源代码:
public void reduce(Text key, Iterator<CrawlDatum> values, OutputCollector<Text, CrawlDatum> output, Reporter reporter) throws IOException { CrawlDatum fetch = new CrawlDatum(); CrawlDatum old = new CrawlDatum(); boolean fetchSet = false; boolean oldSet = false; byte[] signature = null; boolean multiple = false; // avoid deep copy when only single value exists linked.clear(); org.apache.hadoop.io.MapWritable metaFromParse = null; // 这个循环主要是遍历所有相同url的value(CrawlDatum)值,对old和fetch两个变量进行赋值。 // 和收集其外链接,把它们放入一个按分数排序的优先队列中去 while (values.hasNext()) { CrawlDatum datum = (CrawlDatum)values.next(); // 判断是否要对CrawlDatum进行深度复制 if (!multiple && values.hasNext()) multiple = true; // 判断CrawlDatum中是否有数据库相关的参数,如STATUS_DB_(UNFETCHED|FETCHED|GONE|REDIR_TEMP|REDIR_PERM|NOTMODIFIED) if (CrawlDatum.hasDbStatus(datum)) { if (!oldSet) { if (multiple) { old.set(datum); } else { // no need for a deep copy - this is the only value old = datum; } oldSet = true; } else { // always take the latest version // 总是得到最新的CrawlDatum版本 if (old.getFetchTime() < datum.getFetchTime()) old.set(datum); } continue; } // 判断CrawlDatum是否有关抓取的状态,如STATUS_FETCH_(SUCCESS|RETRY|REDIR_TEMP|REDIR_PERM|GONE|NOTMODIFIED) if (CrawlDatum.hasFetchStatus(datum)) { if (!fetchSet) { if (multiple) { fetch.set(datum); } else { fetch = datum; } fetchSet = true; } else { // always take the latest version if (fetch.getFetchTime() < datum.getFetchTime()) fetch.set(datum); } continue; } // 根据CrawlDatum的状态来收集另一些信息 switch (datum.getStatus()) { // collect other info // 如果这个CrawlDatum是一个外链接,那放入一个优先队列中,按分数的降序来做 case CrawlDatum.STATUS_LINKED: CrawlDatum link; if (multiple) { link = new CrawlDatum(); link.set(datum); } else { link = datum; } linked.insert(link); break; case CrawlDatum.STATUS_SIGNATURE: // 得到其唯一ID号 signature = datum.getSignature(); break; case CrawlDatum.STATUS_PARSE_META: // 得到其元数据 metaFromParse = datum.getMetaData(); break; default: LOG.warn("Unknown status, key: " + key + ", datum: " + datum); } } // copy the content of the queue into a List // in reversed order int numLinks = linked.size(); List<CrawlDatum> linkList = new ArrayList<CrawlDatum>(numLinks); for (int i = numLinks - 1; i >= 0; i--) { linkList.add(linked.pop()); } // 如果这个CrawlDatum集合中没有数据库相关的状态(也就是说没有这个url的原始状态)或者配置了不添加外链接,直接返回 // if it doesn't already exist, skip it if (!oldSet && !additionsAllowed) return; // if there is no fetched datum, perhaps there is a link // 如果这个CrawlDatum集合中没有和抓取相关的状态,并且外链接数量要大于0 if (!fetchSet && linkList.size() > 0) { fetch = linkList.get(0); // 得到第一个外链接 fetchSet = true; } // still no new data - record only unchanged old data, if exists, and return // 如果没有抓取相头的状态,也没有外链接,也就是说这个CrawlDatum是老的, if (!fetchSet) { // 判断是否有和数据库相关的状态,有的话就输出,没有的话就直接返回 if (oldSet) {// at this point at least "old" should be present output.collect(key, old); } else { LOG.warn("Missing fetch and old value, signature=" + signature); } return; } // 下面是用来初始化最新的CrawlDatum版本 if (signature == null) signature = fetch.getSignature(); long prevModifiedTime = oldSet ? old.getModifiedTime() : 0L; long prevFetchTime = oldSet ? old.getFetchTime() : 0L; // initialize with the latest version, be it fetch or link result.set(fetch); if (oldSet) { // copy metadata from old, if exists if (old.getMetaData().size() > 0) { result.putAllMetaData(old); // overlay with new, if any if (fetch.getMetaData().size() > 0) result.putAllMetaData(fetch); } // set the most recent valid value of modifiedTime if (old.getModifiedTime() > 0 && fetch.getModifiedTime() == 0) { result.setModifiedTime(old.getModifiedTime()); } } 下面是用来确定其最新的状态 switch (fetch.getStatus()) { // determine new status case CrawlDatum.STATUS_LINKED: // it was link if (oldSet) { // if old exists result.set(old); // use it } else { result = schedule.initializeSchedule((Text)key, result); result.setStatus(CrawlDatum.STATUS_DB_UNFETCHED); try { scfilters.initialScore((Text)key, result); } catch (ScoringFilterException e) { if (LOG.isWarnEnabled()) { LOG.warn("Cannot filter init score for url " + key + ", using default: " + e.getMessage()); } result.setScore(0.0f); } } break; case CrawlDatum.STATUS_FETCH_SUCCESS: // succesful fetch case CrawlDatum.STATUS_FETCH_REDIR_TEMP: // successful fetch, redirected case CrawlDatum.STATUS_FETCH_REDIR_PERM: case CrawlDatum.STATUS_FETCH_NOTMODIFIED: // successful fetch, notmodified // determine the modification status int modified = FetchSchedule.STATUS_UNKNOWN; if (fetch.getStatus() == CrawlDatum.STATUS_FETCH_NOTMODIFIED) { modified = FetchSchedule.STATUS_NOTMODIFIED; } else { if (oldSet && old.getSignature() != null && signature != null) { if (SignatureComparator._compare(old.getSignature(), signature) != 0) { modified = FetchSchedule.STATUS_MODIFIED; } else { modified = FetchSchedule.STATUS_NOTMODIFIED; } } } // set the schedule result = schedule.setFetchSchedule((Text)key, result, prevFetchTime, prevModifiedTime, fetch.getFetchTime(), fetch.getModifiedTime(), modified); // set the result status and signature if (modified == FetchSchedule.STATUS_NOTMODIFIED) { result.setStatus(CrawlDatum.STATUS_DB_NOTMODIFIED); if (oldSet) result.setSignature(old.getSignature()); } else { switch (fetch.getStatus()) { case CrawlDatum.STATUS_FETCH_SUCCESS: result.setStatus(CrawlDatum.STATUS_DB_FETCHED); break; case CrawlDatum.STATUS_FETCH_REDIR_PERM: result.setStatus(CrawlDatum.STATUS_DB_REDIR_PERM); break; case CrawlDatum.STATUS_FETCH_REDIR_TEMP: result.setStatus(CrawlDatum.STATUS_DB_REDIR_TEMP); break; default: LOG.warn("Unexpected status: " + fetch.getStatus() + " resetting to old status."); if (oldSet) result.setStatus(old.getStatus()); else result.setStatus(CrawlDatum.STATUS_DB_UNFETCHED); } result.setSignature(signature); if (metaFromParse != null) { for (Entry<Writable, Writable> e : metaFromParse.entrySet()) { result.getMetaData().put(e.getKey(), e.getValue()); } } } // if fetchInterval is larger than the system-wide maximum, trigger // an unconditional recrawl. This prevents the page to be stuck at // NOTMODIFIED state, when the old fetched copy was already removed with // old segments. if (maxInterval < result.getFetchInterval()) result = schedule.forceRefetch((Text)key, result, false); break; case CrawlDatum.STATUS_SIGNATURE: if (LOG.isWarnEnabled()) { LOG.warn("Lone CrawlDatum.STATUS_SIGNATURE: " + key); } return; case CrawlDatum.STATUS_FETCH_RETRY: // temporary failure if (oldSet) { result.setSignature(old.getSignature()); // use old signature } result = schedule.setPageRetrySchedule((Text)key, result, prevFetchTime, prevModifiedTime, fetch.getFetchTime()); if (result.getRetriesSinceFetch() < retryMax) { result.setStatus(CrawlDatum.STATUS_DB_UNFETCHED); } else { result.setStatus(CrawlDatum.STATUS_DB_GONE); } break; case CrawlDatum.STATUS_FETCH_GONE: // permanent failure if (oldSet) result.setSignature(old.getSignature()); // use old signature result.setStatus(CrawlDatum.STATUS_DB_GONE); result = schedule.setPageGoneSchedule((Text)key, result, prevFetchTime, prevModifiedTime, fetch.getFetchTime()); break; default: throw new RuntimeException("Unknown status: " + fetch.getStatus() + " " + key); } // 这里用来更新result的分数 try { scfilters.updateDbScore((Text)key, oldSet ? old : null, result, linkList); } catch (Exception e) { if (LOG.isWarnEnabled()) { LOG.warn("Couldn't update score, key=" + key + ": " + e); } } // remove generation time, if any result.getMetaData().remove(Nutch.WRITABLE_GENERATE_TIME_KEY); output.collect(key, result); // 写出数据 } } 其中流程就是对三个目录进行合并,对相同的url的value(CrawlDatum)进行聚合,产生新的CarwlDatum,再写回原来的数据库中。
相关推荐
5. **配置文件**:如 `conf/nutch-default.xml` 和 `conf/nutch-site.xml`,分别包含 Nutch 的默认配置和用户自定义配置。 6. **抓取策略**:Nutch 支持基于链接的抓取策略,如 PR(PageRank)和 TF-IDF(Term ...
具体而言,会加载`nutch-default.xml`、`crawl-tool.xml`(可选)和`nutch-site.xml`这三个配置文件,分别代表默认配置、爬虫特有配置和用户自定义配置。这些配置文件对Nutch的行为和性能具有决定性的影响。 #### ...
Nutch-1.9 是一个开源的网络爬虫软件,被广泛用于数据挖掘、搜索引擎构建以及网络信息提取。它的最新版本提供了许多改进和优化,使得它成为开发者和研究者手中的利器。Nutch的设计目标是易用性和可扩展性,允许用户...
在`apache-nutch-2.2.1`这个压缩包中,你将找到以下关键组成部分: 1. **源代码结构**:Nutch 的源代码通常分为几个主要模块,包括`conf`(配置文件)、`bin`(脚本和可执行文件)、`src`(源代码)以及`lib`(库...
这个源码包 "apache-nutch-1.3-src.tar.gz" 和 "nutch-1.3.tar.gz" 包含了 Nutch 1.3 的源代码和编译后的二进制文件,对于开发者和研究者来说是非常有价值的资源。 **Nutch 概述** Nutch 是基于 Java 开发的,遵循 ...
Nutch-1.5.1源码是Apache Nutch项目的一个重要版本,它是一个高度可扩展的、开源的网络爬虫和全文搜索引擎框架。Nutch最初由Doug Cutting创建,后来成为了Hadoop项目的一部分,因为其在大数据处理和分布式计算方面的...
这个`apache-nutch-1.6-src.tar.gz`文件包含了Nutch 1.6的源代码,允许开发者深入研究其内部机制,定制自己的爬虫需求,或者为项目贡献代码。 源代码包`apache-nutch-1.6`中通常包含以下几个关键部分: 1. **源...
"apache-nutch-1.4-src.zip"是Nutch源码的zip压缩版本,用户可以直接解压并访问其中的源代码。 要获取和解压这些源码,你可以使用各种工具,如在Linux或Mac系统中使用命令行的tar和unzip命令,或者在Windows中使用...
在这个"apache-nutch-1.4-bin.tar.gz"压缩包中,包含了运行 Nutch 的所有必要组件和配置文件,适合初学者和开发者快速部署和实验。 **Nutch 的核心组成部分:** 1. **爬虫(Spider)**:Nutch 的爬虫负责在网络中...
nutch配置nutch-default.xml
Nutch 1.6源码的获取方式不仅可以通过下载这个压缩包,还可以直接从Nutch的官方网站获取。 Nutch的源码分析主要涉及以下几个关键知识点: 1. **网络爬虫**:Nutch的核心功能是作为一个网络爬虫,它自动遍历互联网...
这个压缩包 "apach-nutch-1.9-bin.tar.gz" 包含了运行Nutch所需的全部二进制文件和配置文件。 1. **Nutch 概述**:Nutch 是 Apache 软件基金会的一个项目,主要目标是提供一个可扩展、高效且可靠的网络数据抓取系统...
在“apache-nutch-1.7-src.tar.gz”这个压缩包中,你将获得Nutch 1.7的源代码,这使得开发者可以深入了解其工作原理,并对其进行定制和扩展。解压后的文件夹“apache-nutch-1.7”包含了所有必要的组件和配置文件。 ...
《lucene+nutch搜索引擎光盘源码(1-8章)》是一套全面解析Lucene和Nutch搜索引擎技术的源代码教程,涵盖了从基础到进阶的多个层面。这套资源包含8个章节的源码,由于文件大小限制,被分成了多个部分进行上传。 ...
3. **配置Nutch**:修改`conf/nutch-site.xml`等配置文件,设置爬虫的启动参数,如抓取范围、URL过滤规则等。 4. **创建数据库**:Nutch通常使用Hadoop HDFS作为数据存储,因此需要设置Hadoop环境,并创建相应的...
4. **配置与定制**:Nutch的配置主要在conf目录下的`nutch-site.xml`文件中进行,包括爬虫策略、存储路径、Hadoop配置等。用户可以根据需求修改这些配置或编写自定义插件。 5. **与Hadoop的集成**:Nutch 2.3 使用...
8. **Hadoop 集成**:Nutch-1.3 依赖 Hadoop 进行分布式处理,这包括数据的存储(HDFS)和计算(MapReduce)。通过源码,我们可以学习如何利用 Hadoop 处理大量网页数据。 9. **日志与监控**:Nutch 提供了详尽的...
apache-nutch-2.3.1-src.tar ,网络爬虫的源码, 用ivy2管理, ant runtime 编译 apache-nutch-2.3.1-src.tar ,网络爬虫的源码, 用ivy2管理, ant runtime 编译
Nutch是一款刚刚诞生的完整的开源搜索引擎系统,可以结合数据库进行索引,能快速构建所需系统。Nutch 是基于Lucene的,Lucene为 Nutch 提供了...因此Nutch就可以更好的发展,为那些爱好搜索引擎的人们提供了一个平台。
下面我们将详细探讨 Nutch 的注入(Injector)过程,这是整个爬取流程的第一步。 Injector 类在 Nutch 中的作用是将输入的 URL 集合并入到 CrawlDB(爬取数据库)中。这个过程主要包括三个主要步骤: 1. **URL ...