- 浏览: 4400351 次
- 性别:
- 来自: 湛江
博客专栏
-
SQLite源码剖析
浏览量:80073
-
WIN32汇编语言学习应用...
浏览量:70040
-
神奇的perl
浏览量:103346
-
lucene等搜索引擎解析...
浏览量:285798
-
深入lucene3.5源码...
浏览量:15012
-
VB.NET并行与分布式编...
浏览量:67554
-
silverlight 5...
浏览量:32147
-
算法下午茶系列
浏览量:45986
文章分类
最新评论
-
yoyo837:
counters15 写道目前只支持IE吗?插件的东西是跨浏览 ...
Silverlight 5 轻松开启绚丽的网页3D世界 -
shuiyunbing:
直接在前台导出方式:excel中的单元格样式怎么处理,比如某行 ...
Flex导出Excel -
di1984HIT:
写的很好~
lucene入门-索引网页 -
rjguanwen:
在win7 64位操作系统下,pygtk的Entry无法输入怎 ...
pygtk-entry -
ldl_xz:
http://www.9958.pw/post/php_exc ...
PHPExcel常用方法汇总(转载)
继续定义单元神经元
net.inputs{i}.range
This property defines the range of each element of the ith network input.
It can be set to any Ri x 2 matrix, where Ri is the number of elements in the input (net.inputs{i}.size), and each element in column 1 is less than the element next to it in column 2.
Each jth row defines the minimum and maximum values of the jth input element, in that order:
net.inputs{i}(j,:)
Uses. Some initialization functions use input ranges to find appropriate initial values for input weight matrices.
Side Effects. Whenever the number of rows in this property is altered, the input size, processedSize, and processedRange change to remain consistent. The sizes of any weights coming from this input and the dimensions of the weight matrices also change.
>> net.inputs{1}.range=[0 1;0 1]
net =
Neural Network object:
architecture:
numInputs: 1
numLayers: 2
biasConnect: [1; 1]
inputConnect: [1; 0]
layerConnect: [0 0; 1 0]
outputConnect: [0 1]
numOutputs: 1 (read-only)
numInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)
subobject structures:
inputs: {1x1 cell} of inputs
layers: {2x1 cell} of layers
outputs: {1x2 cell} containing 1 output
biases: {2x1 cell} containing 2 biases
inputWeights: {2x1 cell} containing 1 input weight
layerWeights: {2x2 cell} containing 1 layer weight
functions:
adaptFcn: (none)
divideFcn: (none)
gradientFcn: (none)
initFcn: (none)
performFcn: (none)
plotFcns: {}
trainFcn: (none)
parameters:
adaptParam: (none)
divideParam: (none)
gradientParam: (none)
initParam: (none)
performParam: (none)
trainParam: (none)
weight and bias values:
IW: {2x1 cell} containing 1 input weight matrix
LW: {2x2 cell} containing 1 layer weight matrix
b: {2x1 cell} containing 2 bias vectors
other:
name: ''
userdata: (user information)
>>
======
net.layers{i}.size
This property defines the number of neurons in the ith layer. It can be set to 0 or a positive integer.
Side Effects. Whenever this property is altered, the sizes of any input weights going to the layer (net.inputWeights{i,:}.size), any layer weights going to the layer (net.layerWeights{i,:}.size) or coming from the layer (net.inputWeights{i,:}.size), and the layer's bias (net.biases{i}.size), change.
The dimensions of the corresponding weight matrices (net.IW{i,:}, net.LW{i,:}, net.LW{:,i}), and biases (net.b{i}) also change.
Changing this property also changes the size of the layer's output (net.outputs{i}.size) and target (net.targets{i}.size) if they exist.
Finally, when this property is altered, the dimensions of the layer's neurons (net.layers{i}.dimension) are set to the same value. (This results in a one-dimensional arrangement of neurons. If another arrangement is required, set the dimensions property directly instead of using size.
=======
>> net.layers{1}.size=2
net =
Neural Network object:
architecture:
numInputs: 1
numLayers: 2
biasConnect: [1; 1]
inputConnect: [1; 0]
layerConnect: [0 0; 1 0]
outputConnect: [0 1]
numOutputs: 1 (read-only)
numInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)
subobject structures:
inputs: {1x1 cell} of inputs
layers: {2x1 cell} of layers
outputs: {1x2 cell} containing 1 output
biases: {2x1 cell} containing 2 biases
inputWeights: {2x1 cell} containing 1 input weight
layerWeights: {2x2 cell} containing 1 layer weight
functions:
adaptFcn: (none)
divideFcn: (none)
gradientFcn: (none)
initFcn: (none)
performFcn: (none)
plotFcns: {}
trainFcn: (none)
parameters:
adaptParam: (none)
divideParam: (none)
gradientParam: (none)
initParam: (none)
performParam: (none)
trainParam: (none)
weight and bias values:
IW: {2x1 cell} containing 1 input weight matrix
LW: {2x2 cell} containing 1 layer weight matrix
b: {2x1 cell} containing 2 bias vectors
other:
name: ''
userdata: (user information)
>>
=====
net.layers{i}.initFcn
This property defines which of the layer initialization functions are used to initialize the ith layer, if the network initialization function (net.initFcn) is initlay. If the network initialization is set to initlay, then the function indicated by this property is used to initialize the layer's weights and biases.
For a list of functions, type
help nninit
=====
>> net.layers{1}.initFcn='initnw'
net =
Neural Network object:
architecture:
numInputs: 1
numLayers: 2
biasConnect: [1; 1]
inputConnect: [1; 0]
layerConnect: [0 0; 1 0]
outputConnect: [0 1]
numOutputs: 1 (read-only)
numInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)
subobject structures:
inputs: {1x1 cell} of inputs
layers: {2x1 cell} of layers
outputs: {1x2 cell} containing 1 output
biases: {2x1 cell} containing 2 biases
inputWeights: {2x1 cell} containing 1 input weight
layerWeights: {2x2 cell} containing 1 layer weight
functions:
adaptFcn: (none)
divideFcn: (none)
gradientFcn: (none)
initFcn: (none)
performFcn: (none)
plotFcns: {}
trainFcn: (none)
parameters:
adaptParam: (none)
divideParam: (none)
gradientParam: (none)
initParam: (none)
performParam: (none)
trainParam: (none)
weight and bias values:
IW: {2x1 cell} containing 1 input weight matrix
LW: {2x2 cell} containing 1 layer weight matrix
b: {2x1 cell} containing 2 bias vectors
other:
name: ''
userdata: (user information)
>>
>> net.layers{2}.size=1
>> net.layers{2}.initFcn='initnw'
>> net.layers{2}.transferFcn='hardlim'
net =
Neural Network object:
architecture:
numInputs: 1
numLayers: 2
biasConnect: [1; 1]
inputConnect: [1; 0]
layerConnect: [0 0; 1 0]
outputConnect: [0 1]
numOutputs: 1 (read-only)
numInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)
subobject structures:
inputs: {1x1 cell} of inputs
layers: {2x1 cell} of layers
outputs: {1x2 cell} containing 1 output
biases: {2x1 cell} containing 2 biases
inputWeights: {2x1 cell} containing 1 input weight
layerWeights: {2x2 cell} containing 1 layer weight
functions:
adaptFcn: (none)
divideFcn: (none)
gradientFcn: (none)
initFcn: (none)
performFcn: (none)
plotFcns: {}
trainFcn: (none)
parameters:
adaptParam: (none)
divideParam: (none)
gradientParam: (none)
initParam: (none)
performParam: (none)
trainParam: (none)
weight and bias values:
IW: {2x1 cell} containing 1 input weight matrix
LW: {2x2 cell} containing 1 layer weight matrix
b: {2x1 cell} containing 2 bias vectors
other:
name: ''
userdata: (user information)
>>
=
net.layers{i}.transferFcn
This function defines which of the transfer functions is used to calculate the ith layer's output, given the layer's net input, during simulation and training.
For a list of functions type: help nntransfer
=
>> net.adapFcn='trans'
===
net.adaptFcn
This property defines the function to be used when the network adapts. It can be set to the name of any network adapt function. The network adapt function is used to perform adaption whenever adapt is called.
[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)
For a list of functions type help nntrain.
Side Effects. Whenever this property is altered, the network's adaption parameters (net.adaptParam) are set to contain the parameters and default values of the new function.
===
>> net.adaptFcn='trains'
net =
Neural Network object:
architecture:
numInputs: 1
numLayers: 2
biasConnect: [1; 1]
inputConnect: [1; 0]
layerConnect: [0 0; 1 0]
outputConnect: [0 1]
numOutputs: 1 (read-only)
numInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)
subobject structures:
inputs: {1x1 cell} of inputs
layers: {2x1 cell} of layers
outputs: {1x2 cell} containing 1 output
biases: {2x1 cell} containing 2 biases
inputWeights: {2x1 cell} containing 1 input weight
layerWeights: {2x2 cell} containing 1 layer weight
functions:
adaptFcn: 'trains'
divideFcn: (none)
gradientFcn: (none)
initFcn: (none)
performFcn: (none)
plotFcns: {}
trainFcn: (none)
parameters:
adaptParam: .passes
divideParam: (none)
gradientParam: (none)
initParam: (none)
performParam: (none)
trainParam: (none)
weight and bias values:
IW: {2x1 cell} containing 1 input weight matrix
LW: {2x2 cell} containing 1 layer weight matrix
b: {2x1 cell} containing 2 bias vectors
other:
name: ''
userdata: (user information)
>>
==========
net.performFcn
This property defines the function used to measure the network's performance. You can set it to the name of any of the performance functions. The performance function is used to calculate network performance during training whenever train is called.
[net,tr] = train(NET,P,T,Pi,Ai)
For a list of functions, type
help nnperformance
Side Effects. Whenever this property is altered, the network's performance parameters (net.performParam) are set to contain the parameters and default values of the new function
==========
net.performFcn='mse'
======
======
>> net.trainFcn='trainlm'
发表评论
-
R语言与数据分析
2015-05-15 20:58 2152当今计算机系统要处理的数据类型变得多种多样,并且为了深入理 ... -
机器学习实践指南:案例应用解析
2014-04-17 19:53 1005试读及购买链接 《机器 ... -
matlab-矩阵合并
2013-06-10 13:56 3214a = 1 2 3 2 -
人工智能与数据分析所需要的知识
2013-04-30 18:27 292想较好得在数据分析和人工智能相关领域发展,最好具备以下基础: ... -
麦哈普的AI乐园【myhaspl@qq.com】我的另一个博客(机器学习、数据分析、智能计算的原创)
2013-04-28 10:52 11http://blog.csdn.net/u0102556 ... -
R-并行计算
2013-04-28 10:50 6116啊。。。找了一下,R 居然真的有办法可以多cpu平行运算!! ... -
谱聚类
2013-04-11 10:44 27261. 谱聚类 给你博客园上若干个博客,让你将它 ... -
对变化建模-用差分方程-动力系统及常数解
2013-04-09 15:24 1385差分表示在一个时间周期里考察对象的变化量。 差分表示在一个时 ... -
逻辑斯蒂映射-伪随机数
2013-04-04 15:28 3310逻辑斯蒂映射的形式为 x_(n+1)=ax_n( ... -
matlab-多项式乘除法及式子和导数
2013-03-21 15:06 4688>> a=[22 12 4 54] ... -
matlab-数组-元胞数据与结构数组
2013-03-20 17:45 3287y、z是元胞数组,num2cell完成由数值数组到元胞数组的 ... -
矩阵-范数
2013-03-13 17:30 1920>> a a = 12 33 ... -
向量-范数
2013-03-13 16:06 2362>> b=a(3,:) b = 22 ... -
矩阵-求逆
2013-02-27 15:51 2517设R是一个交换环,A是 ... -
lisp-猜数字算法与全局函数、变量
2013-01-30 17:55 1608* (defvar *big* 100) *BIG* ... -
开源 Lisp 相关项目
2013-01-19 22:38 3920IOLib 项目 (http://common-lisp.n ... -
四分位数求法
2012-11-22 20:18 2793四分位数间距:是上四分位数与下四分位数之差,用四分位数间距可反 ... -
matlab-神经网络-自定义多层感知器解决异或(1)
2012-10-09 22:41 5232>> net=network net = ... -
matlab-模态对话框
2012-10-05 16:59 3530modal dialog box with the comm ... -
matlab-gui activex
2012-10-05 16:45 2915为查看方法,在click事件中加上keyboard方法 ...
相关推荐
XOR(异或)问题在神经网络的学习中具有重要的地位,因为它是一个非线性可分的问题,对于单层感知器无法解决,但可以通过多层神经网络解决,这体现了深度学习的优势。 标题"XOR.zip_XOR_matlab xor_neural_xor ...
基于springboot大学生就业信息管理系统源码数据库文档.zip
基于java的驾校收支管理可视化平台的开题报告
时间序列 原木 间隔5秒钟 20241120
毕业设计&课设_基于 Vue 的电影在线预订与管理系统:后台 Java(SSM)代码,为毕业设计项目.zip
基于springboot课件通中小学教学课件共享平台源码数据库文档.zip
基于java的网上购物商城的开题报告
Delphi人脸检测与识别Demo1fdef-main.zip
基于java的咖啡在线销售系统的开题报告
基于java的自助医疗服务系统的开题报告.docx
内容概要:本文档全面介绍了Visual Basic(VB)编程语言的基础知识和高级应用。首先概述了VB的基本特性和开发环境,随后详细讲述了VB的数据类型、变量、运算符、控制结构、数组、过程与函数、变量作用域等内容。接着介绍了窗体设计、控件使用、菜单与工具栏的设计,文件操作、数据库访问等关键知识点。最后讨论了VB的学习方法、发展历史及其在桌面应用、Web应用、数据库应用、游戏开发和自动化脚本编写等领域的广泛应用前景。 适合人群:初学者和中级程序员,尤其是希望快速掌握Windows桌面应用开发的人群。 使用场景及目标:①掌握VB的基础语法和开发环境;②学会使用VB创建复杂的用户界面和功能完整的应用程序;③理解数据库操作、文件管理和网络编程等高级主题。 其他说明:Visual Basic是一种简单易学且功能强大的编程语言,尤其适合用于开发Windows桌面应用。文中不仅覆盖了基础知识,还包括了大量的实用案例和技术细节,帮助读者快速提升编程技能。
基于java的疫情期间高校防控系统开题报告.docx
基于springboot+vue社区老年人帮扶系统源码数据库文档.zip
基于java的超市商品管理系统的开题报告.docx
基于SpringBoot房屋买卖平台源码数据库文档.zip
xdu限通院23微处理器系统与应用大作业(两只老虎),适应于汇编语言keil软件,
<项目介绍> - 新闻类网站系统,基于SSM(Spring、Spring MVC、MyBatis)+MySQL开发,高分成品毕业设计,附带往届论文 - 不懂运行,下载完可以私聊问,可远程教学 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 --------
基于java的学生网上请假系统的开题报告.docx
社会经济繁荣发展的今天,电子商务得到了飞速发展,网上交易越来越彰显出其独特的优越性,在人们的日常生活中,出现了各种类型的交易网站。其中一个就是车辆易主交易网站,它是一个服务于用户买卖二手车辆的交易网站,为用户提供了平等互利、方便快捷的网上交易平台,通过这一类型的网站,用户可自由出售和购买车辆。 本课题主要根据车辆本身的特性,充分发挥互联网的特点与优势,构建一个以二手车辆为商品、基于互联网平台的车辆易主业务交易管理系统,并根据车辆易主业务交易管理系统的应用需求,进行需求分析,进而对网站系统作规划设计。采用IDEA为运行平台,以SSH为框架,运用HTML语言、JSP技术、MySql数据库、JSP与后台数据库链接等关键技术建设二手车网上交易系统,构建车辆易主交易系统的会员注册与登录,网站首页展示、用户发布商品车辆,用户求购商品车辆,分页浏览、购物系统、用户后台管理、管理员用户后台管理等功能,并使这些功能得以实现并更好为用户服务。网站整体构建完成且测试成功后,用户可以进入网站进行注册、登录,登录后,用户可以在网站上发布自己的闲置车辆或者寻找想要购买的车辆,还可以收藏车辆,管理发布和收藏的车辆,
SQLite3的向量扩展库,windows dll,版本0.1.5