- 浏览: 4421131 次
- 性别:
- 来自: 湛江
博客专栏
-
SQLite源码剖析
浏览量:80206
-
WIN32汇编语言学习应用...
浏览量:70603
-
神奇的perl
浏览量:103765
-
lucene等搜索引擎解析...
浏览量:286965
-
深入lucene3.5源码...
浏览量:15085
-
VB.NET并行与分布式编...
浏览量:68003
-
silverlight 5...
浏览量:32385
-
算法下午茶系列
浏览量:46134
文章分类
最新评论
-
yoyo837:
counters15 写道目前只支持IE吗?插件的东西是跨浏览 ...
Silverlight 5 轻松开启绚丽的网页3D世界 -
shuiyunbing:
直接在前台导出方式:excel中的单元格样式怎么处理,比如某行 ...
Flex导出Excel -
di1984HIT:
写的很好~
lucene入门-索引网页 -
rjguanwen:
在win7 64位操作系统下,pygtk的Entry无法输入怎 ...
pygtk-entry -
ldl_xz:
http://www.9958.pw/post/php_exc ...
PHPExcel常用方法汇总(转载)
继续定义单元神经元
net.inputs{i}.range
This property defines the range of each element of the ith network input.
It can be set to any Ri x 2 matrix, where Ri is the number of elements in the input (net.inputs{i}.size), and each element in column 1 is less than the element next to it in column 2.
Each jth row defines the minimum and maximum values of the jth input element, in that order:
net.inputs{i}(j,:)
Uses. Some initialization functions use input ranges to find appropriate initial values for input weight matrices.
Side Effects. Whenever the number of rows in this property is altered, the input size, processedSize, and processedRange change to remain consistent. The sizes of any weights coming from this input and the dimensions of the weight matrices also change.
>> net.inputs{1}.range=[0 1;0 1]
net =
Neural Network object:
architecture:
numInputs: 1
numLayers: 2
biasConnect: [1; 1]
inputConnect: [1; 0]
layerConnect: [0 0; 1 0]
outputConnect: [0 1]
numOutputs: 1 (read-only)
numInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)
subobject structures:
inputs: {1x1 cell} of inputs
layers: {2x1 cell} of layers
outputs: {1x2 cell} containing 1 output
biases: {2x1 cell} containing 2 biases
inputWeights: {2x1 cell} containing 1 input weight
layerWeights: {2x2 cell} containing 1 layer weight
functions:
adaptFcn: (none)
divideFcn: (none)
gradientFcn: (none)
initFcn: (none)
performFcn: (none)
plotFcns: {}
trainFcn: (none)
parameters:
adaptParam: (none)
divideParam: (none)
gradientParam: (none)
initParam: (none)
performParam: (none)
trainParam: (none)
weight and bias values:
IW: {2x1 cell} containing 1 input weight matrix
LW: {2x2 cell} containing 1 layer weight matrix
b: {2x1 cell} containing 2 bias vectors
other:
name: ''
userdata: (user information)
>>
======
net.layers{i}.size
This property defines the number of neurons in the ith layer. It can be set to 0 or a positive integer.
Side Effects. Whenever this property is altered, the sizes of any input weights going to the layer (net.inputWeights{i,:}.size), any layer weights going to the layer (net.layerWeights{i,:}.size) or coming from the layer (net.inputWeights{i,:}.size), and the layer's bias (net.biases{i}.size), change.
The dimensions of the corresponding weight matrices (net.IW{i,:}, net.LW{i,:}, net.LW{:,i}), and biases (net.b{i}) also change.
Changing this property also changes the size of the layer's output (net.outputs{i}.size) and target (net.targets{i}.size) if they exist.
Finally, when this property is altered, the dimensions of the layer's neurons (net.layers{i}.dimension) are set to the same value. (This results in a one-dimensional arrangement of neurons. If another arrangement is required, set the dimensions property directly instead of using size.
=======
>> net.layers{1}.size=2
net =
Neural Network object:
architecture:
numInputs: 1
numLayers: 2
biasConnect: [1; 1]
inputConnect: [1; 0]
layerConnect: [0 0; 1 0]
outputConnect: [0 1]
numOutputs: 1 (read-only)
numInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)
subobject structures:
inputs: {1x1 cell} of inputs
layers: {2x1 cell} of layers
outputs: {1x2 cell} containing 1 output
biases: {2x1 cell} containing 2 biases
inputWeights: {2x1 cell} containing 1 input weight
layerWeights: {2x2 cell} containing 1 layer weight
functions:
adaptFcn: (none)
divideFcn: (none)
gradientFcn: (none)
initFcn: (none)
performFcn: (none)
plotFcns: {}
trainFcn: (none)
parameters:
adaptParam: (none)
divideParam: (none)
gradientParam: (none)
initParam: (none)
performParam: (none)
trainParam: (none)
weight and bias values:
IW: {2x1 cell} containing 1 input weight matrix
LW: {2x2 cell} containing 1 layer weight matrix
b: {2x1 cell} containing 2 bias vectors
other:
name: ''
userdata: (user information)
>>
=====
net.layers{i}.initFcn
This property defines which of the layer initialization functions are used to initialize the ith layer, if the network initialization function (net.initFcn) is initlay. If the network initialization is set to initlay, then the function indicated by this property is used to initialize the layer's weights and biases.
For a list of functions, type
help nninit
=====
>> net.layers{1}.initFcn='initnw'
net =
Neural Network object:
architecture:
numInputs: 1
numLayers: 2
biasConnect: [1; 1]
inputConnect: [1; 0]
layerConnect: [0 0; 1 0]
outputConnect: [0 1]
numOutputs: 1 (read-only)
numInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)
subobject structures:
inputs: {1x1 cell} of inputs
layers: {2x1 cell} of layers
outputs: {1x2 cell} containing 1 output
biases: {2x1 cell} containing 2 biases
inputWeights: {2x1 cell} containing 1 input weight
layerWeights: {2x2 cell} containing 1 layer weight
functions:
adaptFcn: (none)
divideFcn: (none)
gradientFcn: (none)
initFcn: (none)
performFcn: (none)
plotFcns: {}
trainFcn: (none)
parameters:
adaptParam: (none)
divideParam: (none)
gradientParam: (none)
initParam: (none)
performParam: (none)
trainParam: (none)
weight and bias values:
IW: {2x1 cell} containing 1 input weight matrix
LW: {2x2 cell} containing 1 layer weight matrix
b: {2x1 cell} containing 2 bias vectors
other:
name: ''
userdata: (user information)
>>
>> net.layers{2}.size=1
>> net.layers{2}.initFcn='initnw'
>> net.layers{2}.transferFcn='hardlim'
net =
Neural Network object:
architecture:
numInputs: 1
numLayers: 2
biasConnect: [1; 1]
inputConnect: [1; 0]
layerConnect: [0 0; 1 0]
outputConnect: [0 1]
numOutputs: 1 (read-only)
numInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)
subobject structures:
inputs: {1x1 cell} of inputs
layers: {2x1 cell} of layers
outputs: {1x2 cell} containing 1 output
biases: {2x1 cell} containing 2 biases
inputWeights: {2x1 cell} containing 1 input weight
layerWeights: {2x2 cell} containing 1 layer weight
functions:
adaptFcn: (none)
divideFcn: (none)
gradientFcn: (none)
initFcn: (none)
performFcn: (none)
plotFcns: {}
trainFcn: (none)
parameters:
adaptParam: (none)
divideParam: (none)
gradientParam: (none)
initParam: (none)
performParam: (none)
trainParam: (none)
weight and bias values:
IW: {2x1 cell} containing 1 input weight matrix
LW: {2x2 cell} containing 1 layer weight matrix
b: {2x1 cell} containing 2 bias vectors
other:
name: ''
userdata: (user information)
>>
=
net.layers{i}.transferFcn
This function defines which of the transfer functions is used to calculate the ith layer's output, given the layer's net input, during simulation and training.
For a list of functions type: help nntransfer
=
>> net.adapFcn='trans'
===
net.adaptFcn
This property defines the function to be used when the network adapts. It can be set to the name of any network adapt function. The network adapt function is used to perform adaption whenever adapt is called.
[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)
For a list of functions type help nntrain.
Side Effects. Whenever this property is altered, the network's adaption parameters (net.adaptParam) are set to contain the parameters and default values of the new function.
===
>> net.adaptFcn='trains'
net =
Neural Network object:
architecture:
numInputs: 1
numLayers: 2
biasConnect: [1; 1]
inputConnect: [1; 0]
layerConnect: [0 0; 1 0]
outputConnect: [0 1]
numOutputs: 1 (read-only)
numInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)
subobject structures:
inputs: {1x1 cell} of inputs
layers: {2x1 cell} of layers
outputs: {1x2 cell} containing 1 output
biases: {2x1 cell} containing 2 biases
inputWeights: {2x1 cell} containing 1 input weight
layerWeights: {2x2 cell} containing 1 layer weight
functions:
adaptFcn: 'trains'
divideFcn: (none)
gradientFcn: (none)
initFcn: (none)
performFcn: (none)
plotFcns: {}
trainFcn: (none)
parameters:
adaptParam: .passes
divideParam: (none)
gradientParam: (none)
initParam: (none)
performParam: (none)
trainParam: (none)
weight and bias values:
IW: {2x1 cell} containing 1 input weight matrix
LW: {2x2 cell} containing 1 layer weight matrix
b: {2x1 cell} containing 2 bias vectors
other:
name: ''
userdata: (user information)
>>
==========
net.performFcn
This property defines the function used to measure the network's performance. You can set it to the name of any of the performance functions. The performance function is used to calculate network performance during training whenever train is called.
[net,tr] = train(NET,P,T,Pi,Ai)
For a list of functions, type
help nnperformance
Side Effects. Whenever this property is altered, the network's performance parameters (net.performParam) are set to contain the parameters and default values of the new function
==========
net.performFcn='mse'
======
======
>> net.trainFcn='trainlm'
发表评论
-
R语言与数据分析
2015-05-15 20:58 2168当今计算机系统要处理的数据类型变得多种多样,并且为了深入理 ... -
机器学习实践指南:案例应用解析
2014-04-17 19:53 1005试读及购买链接 《机器 ... -
matlab-矩阵合并
2013-06-10 13:56 3248a = 1 2 3 2 -
人工智能与数据分析所需要的知识
2013-04-30 18:27 292想较好得在数据分析和人工智能相关领域发展,最好具备以下基础: ... -
麦哈普的AI乐园【myhaspl@qq.com】我的另一个博客(机器学习、数据分析、智能计算的原创)
2013-04-28 10:52 11http://blog.csdn.net/u0102556 ... -
R-并行计算
2013-04-28 10:50 6130啊。。。找了一下,R 居然真的有办法可以多cpu平行运算!! ... -
谱聚类
2013-04-11 10:44 27391. 谱聚类 给你博客园上若干个博客,让你将它 ... -
对变化建模-用差分方程-动力系统及常数解
2013-04-09 15:24 1385差分表示在一个时间周期里考察对象的变化量。 差分表示在一个时 ... -
逻辑斯蒂映射-伪随机数
2013-04-04 15:28 3310逻辑斯蒂映射的形式为 x_(n+1)=ax_n( ... -
matlab-多项式乘除法及式子和导数
2013-03-21 15:06 4710>> a=[22 12 4 54] ... -
matlab-数组-元胞数据与结构数组
2013-03-20 17:45 3300y、z是元胞数组,num2cell完成由数值数组到元胞数组的 ... -
矩阵-范数
2013-03-13 17:30 1931>> a a = 12 33 ... -
向量-范数
2013-03-13 16:06 2382>> b=a(3,:) b = 22 ... -
矩阵-求逆
2013-02-27 15:51 2529设R是一个交换环,A是 ... -
lisp-猜数字算法与全局函数、变量
2013-01-30 17:55 1608* (defvar *big* 100) *BIG* ... -
开源 Lisp 相关项目
2013-01-19 22:38 3938IOLib 项目 (http://common-lisp.n ... -
四分位数求法
2012-11-22 20:18 2793四分位数间距:是上四分位数与下四分位数之差,用四分位数间距可反 ... -
matlab-神经网络-自定义多层感知器解决异或(1)
2012-10-09 22:41 5260>> net=network net = ... -
matlab-模态对话框
2012-10-05 16:59 3543modal dialog box with the comm ... -
matlab-gui activex
2012-10-05 16:45 2951为查看方法,在click事件中加上keyboard方法 ...
相关推荐
用多层感知器解决异或分类问题,用plot函数绘出向量分布和分类线。
本文将围绕“p_or.zip_XOR_多层感知器_多层神经网络_异或_感知器”这一主题,深入探讨多层感知器如何解决著名的异或(XOR)问题。 首先,我们需要理解什么是异或(XOR)。异或门是数字逻辑电路中的基本元件,它输出...
在本项目中,我们关注的是使用MATLAB进行多层感知器(MLP)神经网络的开发,特别是聚焦于一个两层的结构。多层感知器是前馈神经网络的一种,通常用于非线性数据建模和分类任务。下面将详细讨论相关知识点。 1. **...
在IT领域,特别是机器学习和人工智能的实践中,多层感知器(Multilayer Perceptron, MLP)神经网络模型和反向传播(Backpropagation, BP)算法是基础且重要的组成部分。本文将深入探讨这两个概念及其在MATLAB环境中...
4. **多层感知器完成异或功能**:单层感知器无法解决非线性可分问题,例如“异或”问题。多层感知器引入了隐藏层,使得模型能够学习到更复杂的决策边界,从而解决了这个问题。多层感知器通常包含多个隐藏层,每个...
然而,它们作为神经网络的基础单元,为更复杂模型如多层感知器和现代深度学习架构提供了理论基础。 总结来说,"感知器实现异或,与问题的代码"是一个关于使用感知器模型解决逻辑运算问题的示例,涉及到权重调整、...
在神经网络领域中,Frank Rosenblatt提出的感知器神经网络能够解决线性可分问题,但是后来发现,多层感知器神经网络能够实现“异或”等线性不可分问题。然而,对于自适应线性神经网络,为什么各种文献只有单层自适应...
为了解决这个问题,后来发展出了多层前馈网络(如多层感知器)和更复杂的激活函数,如Sigmoid和ReLU,这些模型能够逼近任意复杂的非线性函数,从而扩展了神经网络的适用范围。 通过构建不同输入数量的感知器网络,...
单隐层神经网络是多层感知器(Multilayer Perceptron, MLP)的一种,由输入层、隐藏层和输出层构成。在本案例中,隐藏层是网络的唯一隐藏层,它负责对输入数据进行非线性转换,以解决线性不可分问题。隐藏层的神经元...
尽管标准感知器只能处理线性可分情况,但通过构建多层感知器(即神经网络),可以逼近任何复杂的非线性决策边界。例如,异或问题是一个经典的非线性问题,两个输入的异或结果无法用一条直线划分。通过增加隐藏层和...
为了解决这个问题,需要使用多层感知器(MLP)。多层感知器包含一个或多个隐藏层,这些隐藏层可以学习更复杂的特征表示,从而解决非线性可分问题。 - **网络结构设计**:多层感知器通常包含输入层、一个或多个隐藏...
在Netlab中,可以通过创建多层感知器(MLP)网络来解决这个问题,这在"demmlp2.m"脚本中可能有所体现。 "LICENSE"文件是许可协议,详细说明了Netlab工具箱的使用权限和限制,用户在使用前应当仔细阅读并遵守其中的...
XOR(异或)问题在神经网络的学习中具有重要的地位,因为它是一个非线性可分的问题,对于单层感知器无法解决,但可以通过多层神经网络解决,这体现了深度学习的优势。 标题"XOR.zip_XOR_matlab xor_neural_xor ...
在人工智能和神经网络领域,XOR(异或)问题是一个经典的示例,它常被用来测试和理解多层感知器(Multi-Layer Perceptron, MLP)的工作原理。XOR问题之所以重要,是因为它无法通过单层感知器解决,而需要引入多层...
BP神经网络的发展可以追溯到1969年,当时明斯基和佩珀特合作出版了《感知器》,论证了简单的线性感知器功能有限,不能解决如“异或”(XOR)这样的基本问题,且对多层网络也持悲观态度。这使得神经网络的研究走向长达...
“异或”问题因其非线性可分性的特点,成为了检验多层感知器(MLP)能力的经典案例。 #### 二、BP算法原理概述 BP算法的核心思想在于利用链式法则来计算损失函数相对于各层权重的梯度,并通过反向传播的方式更新...
本文档提供了神经网络实验指导,涵盖了神经元转移函数、单层感知器、多层感知器等知识点,並提供了MATLAB代码实例。 一、神经元转移函数 神经元转移函数是神经网络中的一种重要组件,它将输入信号转换为输出信号。...
不过,通过多次迭代和权重更新,多层感知器(即深度学习中的前馈神经网络)可以解决此类问题。 感知器算法的基本步骤包括: 1. 初始化权重:通常设置为随机值。 2. 遍历训练集:对于每一个样本,计算预测输出和实际...