`
deepfuture
  • 浏览: 4400372 次
  • 性别: Icon_minigender_1
  • 来自: 湛江
博客专栏
073ec2a9-85b7-3ebf-a3bb-c6361e6c6f64
SQLite源码剖析
浏览量:80074
1591c4b8-62f1-3d3e-9551-25c77465da96
WIN32汇编语言学习应用...
浏览量:70040
F5390db6-59dd-338f-ba18-4e93943ff06a
神奇的perl
浏览量:103346
Dac44363-8a80-3836-99aa-f7b7780fa6e2
lucene等搜索引擎解析...
浏览量:285804
Ec49a563-4109-3c69-9c83-8f6d068ba113
深入lucene3.5源码...
浏览量:15012
9b99bfc2-19c2-3346-9100-7f8879c731ce
VB.NET并行与分布式编...
浏览量:67557
B1db2af3-06b3-35bb-ac08-59ff2d1324b4
silverlight 5...
浏览量:32147
4a56b548-ab3d-35af-a984-e0781d142c23
算法下午茶系列
浏览量:45988
社区版块
存档分类
最新评论

matlab-神经网络-自定义多层感知器解决异或(1)

 
阅读更多

>> net=network

net =

    Neural Network object:

    architecture:

         numInputs: 0
         numLayers: 0
       biasConnect: []
      inputConnect: []
      layerConnect: []
     outputConnect: []

        numOutputs: 0  (read-only)
    numInputDelays: 0  (read-only)
    numLayerDelays: 0  (read-only)

    subobject structures:

            inputs: {0x1 cell} of inputs
            layers: {0x1 cell} of layers
           outputs: {1x0 cell} containing no outputs
            biases: {0x1 cell} containing no biases
      inputWeights: {0x0 cell} containing no input weights
      layerWeights: {0x0 cell} containing no layer weights

    functions:

          adaptFcn: (none)
         divideFcn: (none)
       gradientFcn: (none)
           initFcn: (none)
        performFcn: (none)
          plotFcns: {}
          trainFcn: (none)

    parameters:

        adaptParam: (none)
       divideParam: (none)
     gradientParam: (none)
         initParam: (none)
      performParam: (none)
        trainParam: (none)

    weight and bias values:

                IW: {0x0 cell} containing no input weight matrices
                LW: {0x0 cell} containing no layer weight matrices
                 b: {0x1 cell} containing no bias vectors

    other:

              name: ''
          userdata: (user information)

 

====

 

net.numInputs


This property defines the number of inputs a network receives. It can be set to 0 or a positive integer.

Clarification.   The number of network inputs and the size of a network input are not the same thing. The number of inputs defines how many sets of vectors the network receives as input. The size of each input (i.e., the number of elements in each input vector) is determined by the input size (net.inputs{i}.size).

Most networks have only one input, whose size is determined by the problem.

Side Effects.   Any change to this property results in a change in the size of the matrix defining connections to layers from inputs, (net.inputConnect) and the size of the cell array of input subobjects (net.inputs).

====

 

>> net.numInputs=1

net =

    Neural Network object:

    architecture:

         numInputs: 1
         numLayers: 0
       biasConnect: []
      inputConnect: []
      layerConnect: []
     outputConnect: []

        numOutputs: 0  (read-only)
    numInputDelays: 0  (read-only)
    numLayerDelays: 0  (read-only)

    subobject structures:

            inputs: {1x1 cell} of inputs
            layers: {0x1 cell} of layers
           outputs: {1x0 cell} containing no outputs
            biases: {0x1 cell} containing no biases
      inputWeights: {0x1 cell} containing no input weights
      layerWeights: {0x0 cell} containing no layer weights

    functions:

          adaptFcn: (none)
         divideFcn: (none)
       gradientFcn: (none)
           initFcn: (none)
        performFcn: (none)
          plotFcns: {}
          trainFcn: (none)

    parameters:

        adaptParam: (none)
       divideParam: (none)
     gradientParam: (none)
         initParam: (none)
      performParam: (none)
        trainParam: (none)

    weight and bias values:

                IW: {0x1 cell} containing no input weight matrices
                LW: {0x0 cell} containing no layer weight matrices
                 b: {0x1 cell} containing no bias vectors

    other:

              name: ''
          userdata: (user information)

=====

 

net.numLayers


This property defines the number of layers a network has. It can be set to 0 or a positive integer.

Side Effects.   Any change to this property changes the size of each of these Boolean matrices that define connections to and from layers:
net.biasConnect
net.inputConnect
net.layerConnect
net.outputConnect

 

and changes the size of each cell array of subobject structures whose size depends on the number of layers:
net.biases
net.inputWeights
net.layerWeights
net.outputs

 

and also changes the size of each of the network's adjustable parameter's properties:
net.IW
net.LW
net.b

=====

>> net.numLayers=2

net =

    Neural Network object:

    architecture:

         numInputs: 1
         numLayers: 2
       biasConnect: [0; 0]
      inputConnect: [0; 0]
      layerConnect: [0 0; 0 0]
     outputConnect: [0 0]

        numOutputs: 0  (read-only)
    numInputDelays: 0  (read-only)
    numLayerDelays: 0  (read-only)

    subobject structures:

            inputs: {1x1 cell} of inputs
            layers: {2x1 cell} of layers
           outputs: {1x2 cell} containing no outputs
            biases: {2x1 cell} containing no biases
      inputWeights: {2x1 cell} containing no input weights
      layerWeights: {2x2 cell} containing no layer weights

    functions:

          adaptFcn: (none)
         divideFcn: (none)
       gradientFcn: (none)
           initFcn: (none)
        performFcn: (none)
          plotFcns: {}
          trainFcn: (none)

    parameters:

        adaptParam: (none)
       divideParam: (none)
     gradientParam: (none)
         initParam: (none)
      performParam: (none)
        trainParam: (none)

    weight and bias values:

                IW: {2x1 cell} containing no input weight matrices
                LW: {2x2 cell} containing no layer weight matrices
                 b: {2x1 cell} containing no bias vectors

    other:

              name: ''
          userdata: (user information)

>>

========

 

net.inputConnect


This property defines which layers have weights coming from inputs.

It can be set to any Nl x Ni matrix of Boolean values, where Nl is the number of network layers (net.numLayers), and Ni is the number of network inputs (net.numInputs). The presence (or absence) of a weight going to the ith layer from the jth input is indicated by a 1 (or 0) at net.inputConnect(i,j).

Side Effects.   Any change to this property alters the presence or absence of structures in the cell array of input weight subobjects (net.inputWeights) and the presence or absence of matrices in the cell array of input weight matrices (net.IW).

========

>> net.inputConnect=[1;0]

net =

    Neural Network object:

    architecture:

         numInputs: 1
         numLayers: 2
       biasConnect: [1; 1]
      inputConnect: [1; 0]
      layerConnect: [0 0; 0 0]
     outputConnect: [0 0]

        numOutputs: 0  (read-only)
    numInputDelays: 0  (read-only)
    numLayerDelays: 0  (read-only)

    subobject structures:

            inputs: {1x1 cell} of inputs
            layers: {2x1 cell} of layers
           outputs: {1x2 cell} containing no outputs
            biases: {2x1 cell} containing 2 biases
      inputWeights: {2x1 cell} containing 1 input weight
      layerWeights: {2x2 cell} containing no layer weights

    functions:

          adaptFcn: (none)
         divideFcn: (none)
       gradientFcn: (none)
           initFcn: (none)
        performFcn: (none)
          plotFcns: {}
          trainFcn: (none)

    parameters:

        adaptParam: (none)
       divideParam: (none)
     gradientParam: (none)
         initParam: (none)
      performParam: (none)
        trainParam: (none)

    weight and bias values:

                IW: {2x1 cell} containing 1 input weight matrix
                LW: {2x2 cell} containing no layer weight matrices
                 b: {2x1 cell} containing 2 bias vectors

    other:

              name: ''
          userdata: (user information)

>>

========

 

net.layerConnect


This property defines which layers have weights coming from other layers. It can be set to any Nl x Nl matrix of Boolean values, where Nl is the number of network layers (net.numLayers). The presence (or absence) of a weight going to the ith layer from the jth layer is indicated by a 1 (or 0) at
net.layerConnect(i,j)

 

Side Effects.   Any change to this property alters the presence or absence of structures in the cell array of layer weight subobjects (net.layerWeights) and the presence or absence of matrices in the cell array of layer weight matrices (net.LW).

========

>> net.layerConnect=[0 0;1 0]

net =

    Neural Network object:

    architecture:

         numInputs: 1
         numLayers: 2
       biasConnect: [1; 1]
      inputConnect: [1; 0]
      layerConnect: [0 0; 1 0]
     outputConnect: [0 0]

        numOutputs: 0  (read-only)
    numInputDelays: 0  (read-only)
    numLayerDelays: 0  (read-only)

    subobject structures:

            inputs: {1x1 cell} of inputs
            layers: {2x1 cell} of layers
           outputs: {1x2 cell} containing no outputs
            biases: {2x1 cell} containing 2 biases
      inputWeights: {2x1 cell} containing 1 input weight
      layerWeights: {2x2 cell} containing 1 layer weight

    functions:

          adaptFcn: (none)
         divideFcn: (none)
       gradientFcn: (none)
           initFcn: (none)
        performFcn: (none)
          plotFcns: {}
          trainFcn: (none)

    parameters:

        adaptParam: (none)
       divideParam: (none)
     gradientParam: (none)
         initParam: (none)
      performParam: (none)
        trainParam: (none)

    weight and bias values:

                IW: {2x1 cell} containing 1 input weight matrix
                LW: {2x2 cell} containing 1 layer weight matrix
                 b: {2x1 cell} containing 2 bias vectors

    other:

              name: ''
          userdata: (user information)

>>

 

========

 

net.outputConnect


This property defines which layers generate network outputs. It can be set to any 1 x Nl matrix of Boolean values, where Nl is the number of network layers (net.numLayers). The presence (or absence) of a network output from the ith layer is indicated by a 1 (or 0) at net.outputConnect(i).

Side Effects.   Any change to this property alters the number of network outputs (net.numOutputs) and the presence or absence of structures in the cell array of output subobjects (net.outputs).

========

>> net.outputConnect=[0 1]

net =

    Neural Network object:

    architecture:

         numInputs: 1
         numLayers: 2
       biasConnect: [1; 1]
      inputConnect: [1; 0]
      layerConnect: [0 0; 1 0]
     outputConnect: [0 1]

        numOutputs: 1  (read-only)
    numInputDelays: 0  (read-only)
    numLayerDelays: 0  (read-only)

    subobject structures:

            inputs: {1x1 cell} of inputs
            layers: {2x1 cell} of layers
           outputs: {1x2 cell} containing 1 output
            biases: {2x1 cell} containing 2 biases
      inputWeights: {2x1 cell} containing 1 input weight
      layerWeights: {2x2 cell} containing 1 layer weight

    functions:

          adaptFcn: (none)
         divideFcn: (none)
       gradientFcn: (none)
           initFcn: (none)
        performFcn: (none)
          plotFcns: {}
          trainFcn: (none)

    parameters:

        adaptParam: (none)
       divideParam: (none)
     gradientParam: (none)
         initParam: (none)
      performParam: (none)
        trainParam: (none)

    weight and bias values:

                IW: {2x1 cell} containing 1 input weight matrix
                LW: {2x2 cell} containing 1 layer weight matrix
                 b: {2x1 cell} containing 2 bias vectors

    other:

              name: ''
          userdata: (user information)

>>

 

下面是每层的定义

 

net.inputs{i}.exampleInput


This property defines an example of the kinds of values for the ith network input.

Set the value to any Ri x Q matrix, where Ri is the number of elements in the input (net.inputs{i}.size).

Side Effects.   Whenever this property is altered, the input range, size, processedRange, and processedSize are updated to match net.inputs{i}.exampleInput dimensions and the range of values in each of the rows.

net.inputs{i}.processFcns


This property defines a row cell array of processing function names to be used by ith network input. The processing functions are applied to input values before the network uses them.

Side Effects.   Whenever this property is altered, the input processParams are set to default values for the given processing functions, processSettings, processedSize, and processedRange are defined by applying the process functions and parameters to exampleInput.

net.inputs{i}.processParams


This property holds a row cell array of processing function parameters to be used by ith network input. The processing parameters are applied by the processing functions to input values before the network uses them.

For a list of functions, type
help nnprocess

 

Side Effects.   Whenever this property is altered, the input processSettings, processedSize, and processedRange are defined by applying the process functions and parameters to exampleInput.

net.inputs{i}.processSettings (read-only)


This property holds a row cell array of processing function settings to be used by ith network input. The processing settings are found by applying the processing functions and parameters to the exampleInput and then used to provide consistent results to new input values before the network uses them

 

 

net.inputs{i}.processedRange (read-only)


This property defines the range of exampleInput values after they have been processed with the processingFcns and processingParams.

net.inputs{i}.processedSize (read-only)


This property defines the number of rows in the exampleInput values after they have been processed with the processingFcns and processingParams.

net.inputs{i}.range


This property defines the range of each element of the ith network input.

It can be set to any Ri x 2 matrix, where Ri is the number of elements in the input (net.inputs{i}.size), and each element in column 1 is less than the element next to it in column 2.

Each jth row defines the minimum and maximum values of the jth input element, in that order:
net.inputs{i}(j,:)

 

Uses.   Some initialization functions use input ranges to find appropriate initial values for input weight matrices.

Side Effects.   Whenever the number of rows in this property is altered, the input size, processedSize, and processedRange change to remain consistent. The sizes of any weights coming from this input and the dimensions of the weight matrices also change.

net.inputs{i}.size


This property defines the number of elements in the ith network input. It can be set to 0 or a positive integer.

Side Effects.   Whenever this property is altered, the input range, processedRange, and processedSize are updated. Any associated input weights change size accordingly.

net.inputs{i}.userdata


This property provides a place for users to add custom information to the ith network input.

 

 

Layers


These properties define the details of each ith network layer.

net.layers{i}.dimensions


This property defines the physical dimensions of the ith layer's neurons. Being able to arrange a layer's neurons in a multidimensional manner is important for self-organizing maps.

It can be set to any row vector of 0 or positive integer elements, where the product of all the elements becomes the number of neurons in the layer (net.layers{i}.size).

Uses.   Layer dimensions are used to calculate the neuron positions within the layer (net.layers{i}.positions) using the layer's topology function (net.layers{i}.topologyFcn).

Side Effects.   Whenever this property is altered, the layer's size (net.layers{i}.size) changes to remain consistent. The layer's neuron positions (net.layers{i}.positions) and the distances between the neurons (net.layers{i}.distances) are also updated.

net.layers{i}.distanceFcn


This property defines which of the distance function is used to calculate distances between neurons in the ith layer from the neuron positions. Neuron distances are used by self-organizing maps. It can be set to the name of any distance function.

For a list of functions, type
help nndistance

 

Side Effects.   Whenever this property is altered, the distances between the layer's neurons (net.layers{i}.distances) are updated.

net.layers{i}.distances (read-only)


This property defines the distances between neurons in the ith layer. These distances are used by self-organizing maps:
net.layers{i}.distances

 

It is always set to the result of applying the layer's distance function (net.layers{i}.distanceFcn) to the positions of the layer's neurons (net.layers{i}.positions).

net.layers{i}.initFcn


This property defines which of the layer initialization functions are used to initialize the ith layer, if the network initialization function (net.initFcn) is initlay. If the network initialization is set to initlay, then the function indicated by this property is used to initialize the layer's weights and biases.

For a list of functions, type
help nninit

 

net.layers{i}.netInputFcn


This property defines which of the net input functions is used to calculate the ith layer's net input, given the layer's weighted inputs and bias during simulating and training.

For a list of functions, type
help nnnetinput

 

net.layers{i}.netInputParam


This property defines the parameters of the layer's net input function. Call help on the current net input function to get a description of each field:
help(net.layers{i}.netInputFcn)

 

net.layers{i}.positions (read-only)


This property defines the positions of neurons in the ith layer. These positions are used by self-organizing maps.

It is always set to the result of applying the layer's topology function (net.layers{i}.topologyFcn) to the positions of the layer's dimensions (net.layers{i}.dimensions).

Plotting.   Use plotsom to plot the positions of a layer's neurons.

For instance, if the first-layer neurons of a network are arranged with dimensions (net.layers{1}.dimensions) of [4 5], and the topology function (net.layers{1}.topologyFcn) is hextop, the neurons' positions can be plotted as follows:
plotsom(net.layers{1}.positions)

 

net.layers{i}.size


This property defines the number of neurons in the ith layer. It can be set to 0 or a positive integer.

Side Effects.   Whenever this property is altered, the sizes of any input weights going to the layer (net.inputWeights{i,:}.size), any layer weights going to the layer (net.layerWeights{i,:}.size) or coming from the layer (net.inputWeights{i,:}.size), and the layer's bias (net.biases{i}.size), change.

The dimensions of the corresponding weight matrices (net.IW{i,:}, net.LW{i,:}, net.LW{:,i}), and biases (net.b{i}) also change.

Changing this property also changes the size of the layer's output (net.outputs{i}.size) and target (net.targets{i}.size) if they exist.

Finally, when this property is altered, the dimensions of the layer's neurons (net.layers{i}.dimension) are set to the same value. (This results in a one-dimensional arrangement of neurons. If another arrangement is required, set the dimensions property directly instead of using size.)

net.layers{i}.topologyFcn


This property defines which of the topology functions are used to calculate the ith layer's neuron positions (net.layers{i}.positions) from the layer's dimensions (net.layers{i}.dimensions).

For a list of functions, type
help nntopology

 

Side Effects.   Whenever this property is altered, the positions of the layer's neurons (net.layers{i}.positions) are updated.

Use plotsom to plot the positions of the layer neurons. For instance, if the first-layer neurons of a network are arranged with dimensions (net.layers{1}.dimensions) of [8 10] and the topology function (net.layers{1}.topologyFcn) is randtop, the neuron positions are arranged to resemble the following plot:
plotsom(net.layers{1}.positions)

 

 

net.layers{i}.transferFcn


This function defines which of the transfer functions is used to calculate the ith layer's output, given the layer's net input, during simulation and training.

For a list of functions type: help nntransfer

net.layers{i}.transferParam


This property defines the parameters of the layer's transfer function. Call help on the current transfer function to get a description of what each field means.
help(net.layers{i}.transferFcn)

 

net.layers{i}.userdata


This property provides a place for users to add custom information to the ith network layer.

Outputs


net.outputs{i}.exampleOutput


This property defines an example of the kinds of target values to be expected by ith network output.

It can be set to any Si x Q matrix, where Si is the desired size of the output.

Side Effects.   Whenever this property is altered, the output range, size, processedRange, and processedSize are updated to match its dimensions and the range of values in each of its rows. The size of the ith layer size is also updated to match the processedSize.

net.outputs{i}.processFcns


This property defines a row cell array of processing function names to be used by the ith network output. The processing functions are applied to target values before the network uses them, and applied in reverse to layer output values before being returned as network output values.

Side Effects.   When you change this property, you also affect the following settings: the output parameters processParams are modified to the default values of the specified processing functions; processSettings, processedSize, and processedRange are defined using the results of applying the process functions and parameters to exampleOutput; the ith layer size is updated to match the processedSize.

For a list of functions, type
help nnprocess

 

net.outputs{i}.processParams


This property holds a row cell array of processing function parameters to be used by ith network output on target values. The processing parameters are applied by the processing functions to input values before the network uses them.

Side Effects.   Whenever this property is altered, the output processSettings, processedSize and processedRange are defined by applying the process functions and parameters to exampleOutput. The ith layer's size is also updated to match the processedSize.

net.outputs{i}.processSettings (read-only)


This property holds a row cell array of processing function settings to be used by ith network output. The processing settings are found by applying the processing functions and parameters to the exampleOutput and then used to provide consistent results to new target values before the network uses them. The processing settings are also applied in reverse to layer output values before being returned by the network.

net.outputs{i}.processedRange (read-only)


This property defines the range of exampleOutput values after they have been processed with the processingFcns and processingParams.

net.outputs{i}.processedSize (read-only)


This property defines the number of rows in the exampleOutput values after they have been processed with the processingFcns and processingParams.

net.outputs{i}.size (read-only)


This property defines the number of elements in the ith layer's output. It is always set to the size of the ith layer (net.layers{i}.size).

net.outputs{i}.userdata


This property provides a place for users to add custom information to the ith layer's output.

Biases


net.biases{i}.initFcn


This property defines the weight and bias initialization functions used to set the ith layer's bias vector (net.b{i}) if the network initialization function is initlay and the ith layer's initialization function is initwb.

For a list of functions, type
help nninit

 

 

net.biases{i}.learn


This property defines whether the ith bias vector is to be altered during training and adaption. It can be set to 0 or 1.

It enables or disables the bias's learning during calls to adapt and train.

net.biases{i}.learnFcn


This property defines which of the learning functions is used to update the ith layer's bias vector (net.b{i}) during training, if the network training function is trainb, trainc, or trainr, or during adaption, if the network adapt function is trains.

For a list of functions, type
help nnlearn

 

Side Effects.   Whenever this property is altered, the biases learning parameters (net.biases{i}.learnParam) are set to contain the fields and default values of the new function.

net.biases{i}.learnParam


This property defines the learning parameters and values for the current learning function of the ith layer's bias. The fields of this property depend on the current learning function. Call help on the current learning function to get a description of what each field means.

net.biases{i}.size (read-only)


This property defines the size of the ith layer's bias vector. It is always set to the size of the ith layer (net.layers{i}.size).

net.biases{i}.userdata


This property provides a place for users to add custom information to the ith layer's bias.

Input Weights


net.inputWeights{i,j}.delays


This property defines a tapped delay line between the jth input and its weight to the ith layer. It must be set to a row vector of increasing values. The elements must be either 0 or positive integers.

Side Effects.   Whenever this property is altered, the weight's size (net.inputWeights{i,j}.size) and the dimensions of its weight matrix (net.IW{i,j}) are updated.

net.inputWeights{i,j}.initFcn


This property defines which of the weight and bias initialization functions is used to initialize the weight matrix (net.IW{i,j}) going to the ith layer from the jth input, if the network initialization function is initlay, and the ith layer's initialization function is initwb. This function can be set to the name of any weight initialization function.

For a list of functions, type
help nninit

 

net.inputWeights{i,j}.learn


This property defines whether the weight matrix to the ith layer from the jth input is to be altered during training and adaption. It can be set to 0 or 1.

net.inputWeights{i,j}.learnFcn


This property defines which of the learning functions is used to update the weight matrix (net.IW{i,j}) going to the ith layer from the jth input during training, if the network training function is trainb, trainc, or trainr, or during adaption, if the network adapt function is trains. It can be set to the name of any weight learning function.

For a list of functions, type
help nnlearn

 

net.inputWeights{i,j}.learnParam


This property defines the learning parameters and values for the current learning function of the ith layer's weight coming from the jth input.

The fields of this property depend on the current learning function (net.inputWeights{i,j}.learnFcn). Evaluate the above reference to see the fields of the current learning function.

Call help on the current learning function to get a description of what each field means.

net.inputWeights{i,j}.size (read-only)


This property defines the dimensions of the ith layer's weight matrix from the jth network input. It is always set to a two-element row vector indicating the number of rows and columns of the associated weight matrix (net.IW{i,j}). The first element is equal to the size of the ith layer (net.layers{i}.size). The second element is equal to the product of the length of the weight's delay vectors and the size of the jth input:
length(net.inputWeights{i,j}.delays) * net.inputs{j}.size

 

net.inputWeights{i,j}.userdata


This property provides a place for users to add custom information to the (i,j)th input weight.

net.inputWeights{i,j}.weightFcn


This property defines which of the weight functions is used to apply the ith layer's weight from the jth input to that input. It can be set to the name of any weight function. The weight function is used to transform layer inputs during simulation and training.

For a list of functions, type
help nnweight

 

net.inputWeights{i,j}.weightParam


This property defines the parameters of the layer's net input function. Call help on the current net input function to get a description of each field

分享到:
评论

相关推荐

    Matlab多层感知器解决异或分类问题

    用多层感知器解决异或分类问题,用plot函数绘出向量分布和分类线。

    p_or.zip_XOR_多层感知器_多层神经网络_异或_感知器

    本文将围绕“p_or.zip_XOR_多层感知器_多层神经网络_异或_感知器”这一主题,深入探讨多层感知器如何解决著名的异或(XOR)问题。 首先,我们需要理解什么是异或(XOR)。异或门是数字逻辑电路中的基本元件,它输出...

    matlab开发-TWEYAYER多层感知器网络的实现

    在本项目中,我们关注的是使用MATLAB进行多层感知器(MLP)神经网络的开发,特别是聚焦于一个两层的结构。多层感知器是前馈神经网络的一种,通常用于非线性数据建模和分类任务。下面将详细讨论相关知识点。 1. **...

    matlab开发-多层感知神经网络模型与反向传播算法

    在IT领域,特别是机器学习和人工智能的实践中,多层感知器(Multilayer Perceptron, MLP)神经网络模型和反向传播(Backpropagation, BP)算法是基础且重要的组成部分。本文将深入探讨这两个概念及其在MATLAB环境中...

    神经网络感知器(原理及matlab程序)

    4. **多层感知器完成异或功能**:单层感知器无法解决非线性可分问题,例如“异或”问题。多层感知器引入了隐藏层,使得模型能够学习到更复杂的决策边界,从而解决了这个问题。多层感知器通常包含多个隐藏层,每个...

    感知器实现异或,与问题的代码

    然而,它们作为神经网络的基础单元,为更复杂模型如多层感知器和现代深度学习架构提供了理论基础。 总结来说,"感知器实现异或,与问题的代码"是一个关于使用感知器模型解决逻辑运算问题的示例,涉及到权重调整、...

    多层线性神经网络与单层线性神经网络的等效性研究.pdf

    在神经网络领域中,Frank Rosenblatt提出的感知器神经网络能够解决线性可分问题,但是后来发现,多层感知器神经网络能够实现“异或”等线性不可分问题。然而,对于自适应线性神经网络,为什么各种文献只有单层自适应...

    计算机神经网络之感知器篇.ppt

    为了解决这个问题,后来发展出了多层前馈网络(如多层感知器)和更复杂的激活函数,如Sigmoid和ReLU,这些模型能够逼近任意复杂的非线性函数,从而扩展了神经网络的适用范围。 通过构建不同输入数量的感知器网络,...

    用matlab实现的单隐层神经网络,即双层网络,能学习简单的逻辑操作,如与或非异或等.zip

    单隐层神经网络是多层感知器(Multilayer Perceptron, MLP)的一种,由输入层、隐藏层和输出层构成。在本案例中,隐藏层是网络的唯一隐藏层,它负责对输入数据进行非线性转换,以解决线性不可分问题。隐藏层的神经元...

    利用感知器算法进行鸢尾花数据分类

    尽管标准感知器只能处理线性可分情况,但通过构建多层感知器(即神经网络),可以逼近任何复杂的非线性决策边界。例如,异或问题是一个经典的非线性问题,两个输入的异或结果无法用一条直线划分。通过增加隐藏层和...

    感知器求解逻辑分类问研究题的

    为了解决这个问题,需要使用多层感知器(MLP)。多层感知器包含一个或多个隐藏层,这些隐藏层可以学习更复杂的特征表示,从而解决非线性可分问题。 - **网络结构设计**:多层感知器通常包含输入层、一个或多个隐藏...

    XOR.zip_XOR_matlab xor_neural_xor matlab_zip

    XOR(异或)问题在神经网络的学习中具有重要的地位,因为它是一个非线性可分的问题,对于单层感知器无法解决,但可以通过多层神经网络解决,这体现了深度学习的优势。 标题"XOR.zip_XOR_matlab xor_neural_xor ...

    XOR.rar_XOR

    在人工智能和神经网络领域,XOR(异或)问题是一个经典的示例,它常被用来测试和理解多层感知器(Multi-Layer Perceptron, MLP)的工作原理。XOR问题之所以重要,是因为它无法通过单层感知器解决,而需要引入多层...

    matlab开发-Netlab

    在Netlab中,可以通过创建多层感知器(MLP)网络来解决这个问题,这在"demmlp2.m"脚本中可能有所体现。 "LICENSE"文件是许可协议,详细说明了Netlab工具箱的使用权限和限制,用户在使用前应当仔细阅读并遵守其中的...

    BP神经网络原理及实战.ppt

    BP神经网络的发展可以追溯到1969年,当时明斯基和佩珀特合作出版了《感知器》,论证了简单的线性感知器功能有限,不能解决如“异或”(XOR)这样的基本问题,且对多层网络也持悲观态度。这使得神经网络的研究走向长达...

    利用BP算法实现“异或”功能

    “异或”问题因其非线性可分性的特点,成为了检验多层感知器(MLP)能力的经典案例。 #### 二、BP算法原理概述 BP算法的核心思想在于利用链式法则来计算损失函数相对于各层权重的梯度,并通过反向传播的方式更新...

    神经网络实验指导.doc

    本文档提供了神经网络实验指导,涵盖了神经元转移函数、单层感知器、多层感知器等知识点,並提供了MATLAB代码实例。 一、神经元转移函数 神经元转移函数是神经网络中的一种重要组件,它将输入信号转换为输出信号。...

    Perceptron.rar_matlab例程_matlab_

    不过,通过多次迭代和权重更新,多层感知器(即深度学习中的前馈神经网络)可以解决此类问题。 感知器算法的基本步骤包括: 1. 初始化权重:通常设置为随机值。 2. 遍历训练集:对于每一个样本,计算预测输出和实际...

Global site tag (gtag.js) - Google Analytics