`
dazhilao
  • 浏览: 246023 次
  • 性别: Icon_minigender_1
  • 来自: 广州
社区版块
存档分类
最新评论

排列组合讲解

阅读更多


在介绍排列组合方法之前 我们先来了解一下基本的运算公式!
C5取3=(5×4×3)/(3×2×1)  C6取2=(6×5)/(2×1) 
通过这2个例子 看出
CM取N 公式 是种子数M开始与自身连续的N个自然数的降序乘积做为分子。 以取值N的阶层作为分母

P53=5×4×3    P66=6×5×4×3×2×1
通过这2个例子
PMN=从M开始与自身连续N个自然数的降序乘积  当N=M时 即M的阶层

排列、组合的本质是研究“从n个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”.

解答排列、组合问题的思维模式有二:
其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”;
其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”.

分类:“做一件事,完成它可以有n类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法.

分步:“做一件事,完成它需要分成n个步骤”,这是说完成这件事的任何一种方法,都要分成n个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤后,这件事才算最终完成.

两个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n类办法,这n类办法彼此之间是相互独立的,无论那一类办法中的那一种方法都能单独完成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理.

在解决排列与组合的应用题时应注意以下几点:
1.有限制条件的排列问题常见命题形式:
“在”与“不在”
“邻”与“不邻”
在解决问题时要掌握基本的解题思想和方法:
⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法.
⑵“不邻”问题在解题时最常用的是“插空排列法”.
⑶“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置.
⑷元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果.
2.有限制条件的组合问题,常见的命题形式:
“含”与“不含”
“至少”与“至多”
在解题时常用的方法有“直接法”或“间接法”.
3. 在处理排列、组合综合题时,通过分析条件按元素的性质分类,做到不重、不漏,按事件的发生过程分步,正确地交替使用两个原理,这是解决排列、组合问题的最基本的,也是最重要的思想方法.

*****************************************************************************

提供10道习题供大家练习
1、三边长均为整数,且最大边长为11的三角形的个数为( C  )
(A)25个        (B)26个          (C)36个          (D)37个
【解析】
根据三角形边的原理  两边之和大于第三边,两边之差小于第三边
可见最大的边是11 
  则两外两边之和不能超过22 因为当三边都为11时 是两边之和最大的时候
  因此我们以一条边的长度开始分析
  如果为11,则另外一个边的长度是11,10,9,8,7,6,。。。。。。1
  如果为10  则另外一个边的长度是10,9,8。。。。。。2,
  (不能为1 否则两者之和会小于11,不能为11,因为第一种情况包含了11,10的组合)
  如果为9    则另外一个边的长度是 9,8,7,。。。。。。。3
  (理由同上 ,可见规律出现)
规律出现  总数是11+9+7+。。。。1=(1+11)×6÷2=36


2、
(1)将4封信投入3个邮筒,有多少种不同的投法?
【解析】  每封信都有3个选择。信与信之间是分步关系。比如说我先放第1封信,有3种可能性。接着再放第2封,也有3种可能性,直到第4封, 所以分步属于乘法原则 即3×3×3×3=3^4

(2)3位旅客,到4个旅馆住宿,有多少种不同的住宿方法?
【解析】跟上述情况类似 对于每个旅客我们都有4种选择。彼此之间选择没有关系 不够成分类关系。属于分步关系。如:我们先安排第一个旅客是4种,再安排第2个旅客是4种选择。知道最后一个旅客也是4种可能。根据分步原则属于乘法关系  即 4×4×4=4^3


(3)8本不同的书,任选3本分给3个同学,每人一本,有多少种不同的分法?
【解析】分步来做
第一步:我们先选出3本书  即多少种可能性 C8取3=56种
第二步:分配给3个同学。 P33=6种 
这里稍微介绍一下为什么是P33 ,我们来看第一个同学可以有3种书选择,选择完成后,第2个同学就只剩下2种选择的情况,最后一个同学没有选择。即3×2×1 这是分步选择符合乘法原则。最常见的例子就是 1,2,3,4四个数字可以组成多少4位数? 也是满足这样的分步原则。 用P来计算是因为每个步骤之间有约束作用 即下一步的选择受到上一步的压缩。
所以该题结果是56×6=336

3、
  七个同学排成一横排照相.
  (1)某甲不站在排头也不能在排尾的不同排法有多少种?    (3600)
【解析】
这个题目我们分2步完成
第一步: 先给甲排  应该排在中间的5个位置中的一个  即C5取1=5
第二步: 剩下的6个人即满足P原则 P66=720
所以 总数是720×5=3600

  (2)某乙只能在排头或排尾的不同排法有多少种?    (1440)
【解析】
第一步:确定乙在哪个位置  排头排尾选其一 C2取1=2
第二步:剩下的6个人满足P原则 P66=720
则总数是 720×2=1440

  (3)甲不在排头或排尾,同时乙不在中间的不同排法有多少种?    (3120)
【解析】特殊情况先安排特殊
  第一种情况:甲不在排头排尾 并且不在中间的情况
  去除3个位置 剩下4个位置供甲选择 C4取1=4, 剩下6个位置 先安中间位置 即除了甲乙2人,其他5人都可以 即以5开始,剩下的5个位置满足P原则 即5×P55=5×120=600  总数是4×600=2400
  第2种情况:甲不在排头排尾, 甲排在中间位置
  则 剩下的6个位置满足P66=720
因为是分类讨论。所以最后的结果是两种情况之和 即 2400+720=3120
 

  (4)甲、乙必须相邻的排法有多少种?    (1440)
【解析】相邻用捆绑原则 2人变一人,7个位置变成6个位置,即分步讨论
  第1: 选位置 C6取1=6
  第2: 选出来的2个位置对甲乙在排 即P22=2
  则安排甲乙符合情况的种数是2×6=12
  剩下的5个人即满足P55的规律=120 
则 最后结果是 120×12=1440

  (5)甲必须在乙的左边(不一定相邻)的不同排法有多少种?(2520)
【解析】
这个题目非常好,我们发现一共是7个位置。位置也是对称的 无论怎么安排。甲出现在乙的左边 和出现在乙的右边的概率是一样的。 所以我们不考虑左右问题 则总数是P77=5040
根据左右概率相等的原则 则排在左边的情况种数是5040÷2=2520

4、用数字0,1,2,3,4,5组成没有重复数字的数. 
  (1)能组成多少个四位数?    (300)
【解析】 四位数 从高位开始到低位  高位特殊 不能排0。 则只有5种可能性
接下来3个位置满足P53原则=5×4×3=60  即总数是 60×5=300
 
  (2)能组成多少个自然数?    (1631) 
【解析】自然数是从个位数开始所有情况
  分情况
  1位数: C6取1=6
  2位数: C5取2×P22+C5取1×P11=25
  3位数: C5取3×P33+C5取2×P22×2=100
  4位数: C5取4×P44+C5取3×P33×3=300
  5位数: C5取5×P55+C5取4×P44×4=600
  6位数: 5×P55=5×120=600
  总数是1631
这里解释一下计算方式 比如说2位数: C5取2×P22+C5取1×P11=25
先从不是0的5个数字中取2个排列 即C5取2×P22  还有一种情况是从不是0的5个数字中选一个和0搭配成2位数 即C5取1×P11  因为0不能作为最高位 所以最高位只有1种可能

  (3)能组成多少个六位奇数?  (288) 
【解析】高位不能为0  个位为奇数1,3,5 则 先考虑低位,再考虑高位 即 3×4×P44=12×24=288

  (4)能组成多少个能被25整除的四位数?  (21) 
【解析】 能被25整除的4位数有2种可能
后2位是25: 3×3=9
后2位是50: P42=4×3=12
共计9+12=21

  (5)能组成多少个比201345大的数?  (479) 
【解析】
从数字201345 这个6位数看 是最高位为2的最小6位数 所以我们看最高位大于等于2的6位数是多少?
4×P55=4×120=480 去掉 201345这个数 即比201345大的有480-1=479

  (6)求所有组成三位数的总和.    (32640)
【解析】每个位置都来分析一下
百位上的和:M1=100×P52(5+4+3+2+1)
十位上的和:M2=4×4×10(5+4+3+2+1)
个位上的和:M3=4×4(5+4+3+2+1)
总和 M=M1+M2+M3=32640



5、生产某种产品100件,其中有2件是次品,现在抽取5件进行检查. 
  (1)“其中恰有两件次品”的抽法有多少种?    (152096)
【解析】  也就是说被抽查的5件中有3件合格的 ,即是从98件合格的取出来的
所以 即C2取2×C98取3=152096

  (2)“其中恰有一件次品”的抽法有多少种?    (7224560) 
【解析】同上述分析,先从2件次品中挑1个次品,再从98件合格的产品中挑4个
C2取1×C98取4=7224560

  (3)“其中没有次品”的抽法有多少种?    (67910864) 
【解析】则即在98个合格的中抽取5个 C98取5=67910864

  (4)“其中至少有一件次品”的抽法有多少种?    (7376656) 
【解析】全部排列 然后去掉没有次品的排列情况 就是至少有1种的
C100取5-C98取5=7376656

  (5)“其中至多有一件次品”的抽法有多少种?    (75135424)
【解析】所有的排列情况中去掉有2件次品的情况即是至多一件次品情况的
C100取5-C98取3=75135424

6、从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有(  C  ) 
(A)140种      (B)84种          (C)70种          (D)35种
【解析】根据条件我们可以分2种情况
第一种情况:2台甲+1台乙 即 C4取2×C5取1=6×5=30
第二种情况:1台甲+2台乙 即 C4取1×C5取2=4×10=40
所以总数是 30+40=70种

7、在50件产品中有4件是次品,从中任抽5件,至少有3件是次品的抽法有_4186_种.
【解析】至少有3件 则说明是3件或4件
3件:C4取3×C46取2=4140
4件:C4取4×C46取1=46
共计是 4140+46=4186

8、有甲、乙、丙三项任务, 甲需2人承担, 乙、丙各需1人承担.从10人中选派4人承担这三项任务, 不同的选法共有(  C  )
(A)1260种      (B)2025种        (C)2520种        (D)5040种
【解析】分步完成
第一步:先从10人中挑选4人的方法有:C10取4=210
第二步:分配给甲乙并的工作是C4取2×C2取1×C1取1=6×2×1=12种情况
则根据分步原则  乘法关系 210×12=2520

9、12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有__
C(4,12)C(4,8)C(4,4)
___种

【解析】每个路口都按次序考虑
第一个路口是C12取4
第二个路口是C8取4
第三个路口是C4取4
则结果是C12取4×C8取4×C4取4
可能到了这里有人会说 三条不同的路不是需要P33吗  其实不是这样的 在我们从12人中任意抽取人数的时候,其实将这些分类情况已经包含了对不同路的情况的包含。 如果再×P33 则是重复考虑了

如果这里不考虑路口的不同 即都是相同路口 则情况又不一样 因为我们在分配人数的时候考虑了路口的不同。所以最后要去除这种可能情况 所以在上述结果的情况下要÷P33


10、在一张节目表中原有8个节目,若保持原有节目的相对顺序不变,再增加三个节目,求共有多少种安排方法? 990
【解析】这是排列组合的一种方法 叫做2次插空法
直接解答较为麻烦,故可先用一个节目去插9个空位,有P19种方法;再用另一个节目去插10个空位,有P110种方法;用最后一个节目去插11个空位,有P111方法,由乘法原理得:所有不同的添加方法为P19•P110•P111=990种。

另解:先在11个位置中排上新添的三个节目有P311种,再在余下的8个位置补上原有的8个节目,只有一解,所以所有方法有P311×1=990种。
分享到:
评论
1 楼 ruijie19871128 2010-10-11  
很不错。。总结的的很全。。加油

相关推荐

    qtc++排列组合实现

    本篇文章将详细讲解如何在Qt C++环境中实现排列组合的算法。 Qt是一个跨平台的C++图形用户界面应用程序开发框架,它提供了丰富的库和工具,使得开发桌面和移动应用变得更加便捷。在Qt中使用C++实现排列组合,我们...

    排列组合之排列组合Ⅲ的PPT

    在本节课程中,我们将详细介绍排列组合Ⅲ的知识点,并结合实际示例进行讲解。 对称关系 对称关系是排列组合Ⅲ中的一种重要关系。它指的是在排列组合中,某些元素可以互换位置,而不影响排列组合的结果。例如,在一...

    概率排列组合全章教案

    本章教案旨在全面讲解概率排列组合的基本概念、公式及其应用,帮助学习者深入理解和掌握这一理论。 首先,我们要理解概率和排列组合的基本定义。概率是描述随机事件发生可能性的数学工具,通常用0到1之间的一个数值...

    Java排列组合算法分析和代码实现

    在编程领域,排列组合是算法设计中的重要组成部分,特别是在数据结构和算法的课程中,以及在解决实际问题如路径搜索、图论问题等时经常用到。本资源深入讲解了如何在Java中实现这两种基本算法。 首先,让我们来理解...

    小学排列组合初步讲解.docx

    ### 小学排列组合初步讲解 #### 一、引言 排列组合是数学的一个分支,主要研究的是在一定条件下,如何将若干个不同的元素按照一定的规则进行排列或组合的方法。对于小学生来说,学习排列组合不仅可以培养他们的...

    排列组合源代码程序, 简单易懂

    总的来说,理解和掌握排列组合的算法及其在源代码中的实现是编程能力的重要组成部分。通过递归和分治策略,我们可以有效地解决这些问题,并且在实际项目中应用这些概念,如优化搜索路径、生成所有可能的解决方案等。

    [Java算法设计] - 排列组合.java

    文档讲解了排列组合的基本概念,包括如何计算阶乘、如何生成排列和组合,以及如何将这些概念应用于解决实际问题。 此外,文档还提供了各种排列组合算法的详细代码示例和实现细节,包括递归和迭代方法。文档还涵盖了...

    高中数学排列组合-平均分组(分配问题).ppt

    平均分组(分配问题)是高中数学排列组合的一个重要应用领域,本节课程旨在通过实例讲解平均分组的概念、公式、性质和应用。 一、组合定义 从 n 个不同元素中取出 m (m≤n) 个元素并成一组,叫做从 n 个不同元素中...

    【创新方案】2014届高考数学一轮复习 9.2排列与组合讲解与练习 理 新人教A版.doc

    在高考中,排列组合通常不会单独出题,而是结合应用题出现,常见题型如选择题和填空题。例如,2012年的陕西、安徽、辽宁等地高考题就包含了这类题目。对于这类问题,关键是要判断问题的本质是排列还是组合,然后利用...

    最新北京小学奥数排列组合经典例题.pdf

    总的来说,这个文件深入浅出地讲解了排列组合的基本知识,通过实例帮助学生理解和应用,旨在提升他们的抽象思维和逻辑推理能力。对于小学生来说,这是提升数学素养,为今后学习更复杂的数学概念打下坚实基础的重要...

    人教版二年级数学上册《排列组合》1.ppt

    在人教版二年级数学上册的《排列组合》课程中,主要讲解了如何通过有序思考来探索不同的组合方式,这是基础数学中的一个重要概念。排列组合是数学中的一个分支,它研究的是对象的不同排列和组合的数量。在这个阶段,...

    天津市高三数学总复习 模块专题29 排列组合(学生版)扫描版 试题.doc

    在中学数学教育中,排列组合是高中数学的重要组成部分,尤其在高三总复习阶段,这一专题通常会作为重点进行深入讲解。本资料是针对天津市高三学生的数学总复习模块,专门针对排列组合进行的试题设计。 排列是指从n...

    Python实现的排列组合计算操作示例

    ### Python实现的排列组合计算操作知识点详解 #### 一、引言 在计算机科学与数学领域,排列与组合是两种非常重要的概念。排列是指从n个不同元素中取出m个元素按照一定的顺序进行排列的方式数量;而组合则是不考虑...

    知识讲解_高考总复习:计数原理、排列组合(基础).doc

    【高考总复习:计数原理、排列组合(基础)】 计数原理是数学中的一个重要概念,主要用于解决实际问题中涉及到的计数问题。在高考复习中,理解和掌握这两个原理是必不可少的。 1. 分类加法计数原理: 分类加法计数...

    高中数学-排列组合解法大全.doc

    排列组合解法大全主要讲解了如何解决这类问题的多种策略。 1. 分类计数原理(加法原理):当完成一件事有多种独立的方法时,计算总数时将所有方法的结果相加。例如,有两类任务,第一类有m种完成方式,第二类有n种...

    高中数学排列组合的应用1PPT课件.pptx

    总的来说,本课件详细讲解了如何运用这些方法来解决实际的排列组合问题,并通过实例解析了各种策略的运用,有助于学生深入理解并掌握排列组合的概念和技巧。在学习过程中,掌握这些方法不仅对高中数学考试至关重要,...

    排列组合备课教案.doc

    《排列组合备课教案》是针对数学教学中的一个重要章节——排列组合进行的详细教案设计,旨在帮助学生理解和掌握分类计数原理、分步计数原理以及排列和排列数的概念及其应用。教案分为六个课时,逐步深入,旨在提升...

    MBA排列组合解题经典[归类].pdf

    本资料主要针对MBA联考中的排列组合解题技巧进行了归纳和讲解。 首先,解决问题时需根据任务的不同性质选择合适的计数原理。分类计数原理用于任务可以由多个独立类别完成的情况,各类别之间互不干扰。分步计数原理...

    2013高考数学 解题方法攻略 排列组合 理

    本篇内容将深入讲解排列组合的解题策略,帮助学生理解和应用相关原理。 首先,我们要区分**分类计数原理(加法原理)**和**分步计数原理(乘法原理)**。分类计数原理适用于完成一件事有多种独立方法的情况,每种...

    小学二年级数学上册数学广角简单的排列组合.pptx

    这篇PPT是针对小学二年级学生的数学教学材料,主要讲解了排列组合的基础概念。排列组合在数学中是一门重要的组合数学分支,它涉及到如何有序或无序地选取多个元素的问题。 1. 排列与组合的基本理解: - 排列:指从...

Global site tag (gtag.js) - Google Analytics