上一篇文章介绍了在ubuntu系统中安装Hadoop的伪分布式环境,这篇文章主要为MapReduce开发环境的搭建流程。
1.HDFS伪分布式配置
使用MapReduce时,如果需要与HDFS建立连接,及使用HDFS中的文件,还需要做一些配置。
首先进入Hadoop的安装目录
cd /usr/local/hadoop/hadoop2
在HDFS中创建用户目录
./bin/hdfs dfs -mkdir -p /user/hadoop
创建input目录,并将./etc/hadoop中的xml文件复制到分布式文件系统中
./bin/hdfs dfs -mkdir input
./bin/hdfs dfs -put ./etc/Hadoop
复制完成后,可以使用下面命令查看文件列表
./bin/hdfs dfs -ls input
2.开发环境搭建
1.1 调整虚拟机内存为2G+
1.2 eclipse linux版本下载
下载地址:http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/neon2
我下载的文件为:eclipse-jee-neon-2-linux-gtk-x86_64.tar.gz
1.3 为hadoop用户分配opt文件夹的操作权限
sudo chown hadoop /opt
sudo chmod -R 777 /opt
1.4 将下载的文件拷贝到opt文件夹下
1.5 解压(解压后文件夹名为eclipse)
cd /opt
sudo tar -zxf eclipse-jee-neon-2-linux-gtk-x86_64.tar.gz
1.6 下载eclispe的Hadoop插件(hadoop-eclipse-plugin-2.6.0.jar)
1.7 为hadoop用户分配eclipse文件夹的权限
sudo chown hadoop /opt/eclipse
sudo chmod -R 777 /opt/eclipse
然后将hadoop-eclipse-plugin-2.6.0.jar拷贝到eclipse的plugins文件夹下
1.8 通过命令行启动eclipse
cd /usr/local/bin
sudo ln -s /opt/eclipse/eclipse
这样设置完成后,以后在命令行中输入eclispe就可启动
eclipse
注意,选择工作区间一定要选在自己有操作权限的目录下,比如我是/home/hadoop/workspace
1.9 启动eclipse后,window - show view - other中将会有MapReduceTools

1.10 打开MapReduce窗口开始配置文件系统连接,要与/usr/local/hadoop/hadoop2/etc/hadoop/下的core-site.xml的配置保持一致



配置完成后,查看左边的DFS树目录变成了下图:

1.11 确保所有的守护进程都已开启
1.12 window -preference - Hadoop Map/Reduce 选择Hadoop的安装目录,我这里是 /usr/local/hadoop/hadoop2,配置完成后新建的hadoop项目会自动导入需要的jar包
1.13 File - new - Project ,选择Map/Reduce Product 新建一个Map/Reduce项目,然后再src下新建一个package,并新建一个WordCount测试类
package test;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
public static class Map extends Mapper<Object,Text,Text,IntWritable>{
private static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key,Text value,Context context) throws IOException,InterruptedException{
StringTokenizer st = new StringTokenizer(value.toString());
while(st.hasMoreTokens()){
word.set(st.nextToken());
context.write(word, one);
}
}
}
public static class Reduce extends Reducer<Text,IntWritable,Text,IntWritable>{
private static IntWritable result = new IntWritable();
public void reduce(Text key,Iterable<IntWritable> values,Context context) throws IOException,InterruptedException{
int sum = 0;
for(IntWritable val:values){
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
/**
* @param args
*/
public static void main(String[] args) throws Exception{
Configuration conf = new Configuration();
conf.set("mapred.job.tracker", "localhost:9001");
args = new String[]{"hdfs://localhost:9000/user/hadoop/input/count_in","hdfs://localhost:9000/user/hadoop/output/count_out"};
String[] otherArgs = new GenericOptionsParser(conf,args).getRemainingArgs();
if(otherArgs.length != 2){
System.err.println("Usage WordCount <int> <out>");
System.exit(2);
}
Job job = new Job(conf,"word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(Map.class);
job.setCombinerClass(Reduce.class);
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
然后将/usr/local/hadoop/hadoop2/etc/hadoop目录下的log4j.properties文件拷贝到src目录下(否则无法在控制台打印日志)
1.14.在input文件夹上右键,创建一个文件夹–count_in,在桌面创建两个文件word1.txt和word2.txt,并写入一些字符串,如:
aaaa
bbbb
cccc
aaaa
然后在count_in文件夹上右键,选择upload file to DFS ,选中word1.txt和word2.txt,将其导入DFS文件系统中
1.15 代码上邮件Run as – Run on Hadoop 运行程序,运行结束后在DFS中的文件夹上右键Refresh,会生产输出文件

输出的内容无误后,MapReduce的开发环境就搭建好了
<script type="text/javascript">
$(function () {
$('pre.prettyprint code').each(function () {
var lines = $(this).text().split('\n').length;
var $numbering = $('<ul/>').addClass('pre-numbering').hide();
$(this).addClass('has-numbering').parent().append($numbering);
for (i = 1; i <= lines; i++) {
$numbering.append($('<li/>').text(i));
};
$numbering.fadeIn(1700);
});
});
</script>
分享到:
相关推荐
赠送jar包:hadoop-mapreduce-client-jobclient-2.6.5.jar; 赠送原API文档:hadoop-mapreduce-client-jobclient-2.6.5-javadoc.jar; 赠送源代码:hadoop-mapreduce-client-jobclient-2.6.5-sources.jar; 赠送...
hadoop-mapreduce-examples-2.7.1.jar
Hadoop 3.x(MapReduce)----【MapReduce 概述】---- 代码 Hadoop 3.x(MapReduce)----【MapReduce 概述】---- 代码 Hadoop 3.x(MapReduce)----【MapReduce 概述】---- 代码 Hadoop 3.x(MapReduce)----...
hadoop-annotations-3.1.1.jar hadoop-common-3.1.1.jar hadoop-mapreduce-client-core-3.1.1.jar hadoop-yarn-api-3.1.1.jar hadoop-auth-3.1.1.jar hadoop-hdfs-3.1.1.jar hadoop-mapreduce-client-hs-3.1.1.jar ...
Hadoop 3.x(MapReduce)----【Hadoop 序列化】---- 代码 Hadoop 3.x(MapReduce)----【Hadoop 序列化】---- 代码 Hadoop 3.x(MapReduce)----【Hadoop 序列化】---- 代码 Hadoop 3.x(MapReduce)----【Hadoop ...
赠送jar包:hadoop-mapreduce-client-core-2.5.1.jar; 赠送原API文档:hadoop-mapreduce-client-core-2.5.1-javadoc.jar; 赠送源代码:hadoop-mapreduce-client-core-2.5.1-sources.jar; 赠送Maven依赖信息文件:...
赠送jar包:hadoop-mapreduce-client-common-2.6.5.jar; 赠送原API文档:hadoop-mapreduce-client-common-2.6.5-javadoc.jar; 赠送源代码:hadoop-mapreduce-client-common-2.6.5-sources.jar; 赠送Maven依赖信息...
hadoop-mapreduce-examples-2.6.5.jar 官方案例源码
赠送jar包:hadoop-mapreduce-client-jobclient-2.6.5.jar; 赠送原API文档:hadoop-mapreduce-client-jobclient-2.6.5-javadoc.jar; 赠送源代码:hadoop-mapreduce-client-jobclient-2.6.5-sources.jar; 赠送...
Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据...
赠送jar包:hadoop-mapreduce-client-app-2.6.5.jar; 赠送原API文档:hadoop-mapreduce-client-app-2.6.5-javadoc.jar; 赠送源代码:hadoop-mapreduce-client-app-2.6.5-sources.jar; 赠送Maven依赖信息文件:...
赠送jar包:hadoop-mapreduce-client-app-2.7.3.jar; 赠送原API文档:hadoop-mapreduce-client-app-2.7.3-javadoc.jar; 赠送源代码:hadoop-mapreduce-client-app-2.7.3-sources.jar; 赠送Maven依赖信息文件:...
赠送jar包:hadoop-mapreduce-client-core-2.7.3.jar; 赠送原API文档:hadoop-mapreduce-client-core-2.7.3-javadoc.jar; 赠送源代码:hadoop-mapreduce-client-core-2.7.3-sources.jar; 赠送Maven依赖信息文件:...
赠送jar包:hadoop-mapreduce-client-app-2.6.5.jar; 赠送原API文档:hadoop-mapreduce-client-app-2.6.5-javadoc.jar; 赠送源代码:hadoop-mapreduce-client-app-2.6.5-sources.jar; 赠送Maven依赖信息文件:...
赠送jar包:hadoop-mapreduce-client-core-2.6.5.jar 赠送原API文档:hadoop-mapreduce-client-core-2.6.5-javadoc.jar 赠送源代码:hadoop-mapreduce-client-core-2.6.5-sources.jar 包含翻译后的API文档:...
hadoop中的demo,wordcount列子用到的JAR包 用法: # 在容器里运行WordCount程序,该程序需要2个参数...hadoop jar hadoop-mapreduce-examples-2.7.1-sources.jar org.apache.hadoop.examples.WordCount input output
hadoop-mapreduce-client-core-2.5.1.jar,mapreduce必备组件,供学习使用 欢迎下载
7. **MapReduce编程**:如果你打算在Windows上进行MapReduce编程,还需要配置开发环境,包括设置Hadoop的类路径,以及使用IDE(如IntelliJ IDEA或Eclipse)的Hadoop插件。 8. **安全性与认证**:在生产环境中,你...
标题与描述中的关键词“Hadoop-0.20.0-HDFS+MapReduce+Hive+HBase十分钟快速入门”揭示了文章旨在介绍Hadoop生态中几个关键组件的基础使用,尤其是针对初学者如何在短时间内掌握这些技术。下面,我们将深入探讨...
在Hadoop 2.7.7版本中,开发MapReduce程序通常需要使用Java编程语言。你需要导入Hadoop的相关库,创建Mapper和Reducer类,并实现它们的map()、reduce()方法。此外,还需要配置Job参数,如输入路径、输出路径、Mapper...