- 浏览: 57118 次
- 性别:
- 来自: 北京
博客专栏
-
设计模式
浏览量:7364
文章分类
最新评论
-
alixjiang:
getInstance应该在同步锁的保护之下吧
设计模式-单例模式 -
再_见孙悟空:
就是信息的转发
设计模式-中介者模式 -
DanielHan:
中介者模式中,中介者参与同事角色之间的通信方式,使用的是观察者 ...
设计模式-中介者模式 -
net_hare:
这个和观察者模式有什么区别
设计模式-中介者模式 -
xinglan500:
用代码解释很好哦。多谢博主啦。
JAVA反射机制之一
本篇文章依旧采用小例子来说明,因为我始终觉的,案例驱动是最好的,要不然只看理论的话,看了也不懂,不过建议大家在看完文章之后,在回过头去看看理论,会有更好的理解。
下面开始正文。
【案例1】通过一个对象获得完整的包名和类名
【运行结果】:Reflect.Demo
添加一句:所有类的对象其实都是Class的实例。
【案例2】实例化Class类对象
【运行结果】:
类名称 Reflect.Demo
类名称 Reflect.Demo
类名称 Reflect.Demo
true
true
true
【案例3】通过Class实例化其他类的对象
通过无参构造实例化对象
【运行结果】:
[Rollen 20]
newInstance()方法是通过类的无参构造方法创建对象的,但是注意一下,当我们把Person中的默认的无参构造函数取消的时候,比如自己定义只定义一个有参数的构造函数之后,会出现错误:
比如我定义了一个构造函数:
然后继续运行上面的程序,会出现:
java.lang.InstantiationException: Reflect.Person
at java.lang.Class.newInstance0(Class.java:340)
at java.lang.Class.newInstance(Class.java:308)
at Reflect.hello.main(hello.java:39)
Exception in thread "main" java.lang.NullPointerException
at Reflect.hello.main(hello.java:47)
所以大家以后再编写使用Class实例化其他类的对象的时候,一定要自己定义无参的构造函数
【案例4】通过Class调用其他类中的构造函数 (也可以通过这种方式通过Class创建其他类的对象)
【运行结果】:
[null 0]
[Rollen 0]
[null 20]
[Rollen 20]
【案例5】
返回一个类实现的接口:
【运行结果】:
实现的接口 Reflect.China
(注意,以下几个例子,都会用到这个例子的Person类,所以为节省篇幅,此处不再粘贴Person的代码部分,只粘贴主类hello的代码)
【案例6】:取得其他类中的父类
【运行结果】
继承的父类为: java.lang.Object
【案例7】:获得其他类中的全部构造函数
这个例子需要在程序开头添加import java.lang.reflect.*;
然后将主类编写为:
【运行结果】:
构造方法: Reflect.Person()
构造方法: Reflect.Person(java.lang.String)
但是细心的读者会发现,上面的构造函数没有public 或者private这一类的修饰符
下面这个例子我们就来获取修饰符
【运行结果】:
构造方法: public Reflect.Person(){}
构造方法: public Reflect.Person(java.lang.String arg1){}
有时候一个方法可能还有异常,呵呵。下面看看:
【运行结果】:
public java.lang.String getSex ()
public void setSex (java.lang.String arg0)
public void sayChina ()
public void sayHello (java.lang.String arg0,int arg1)
public final native void wait (long arg0) throws java.lang.InterruptedException
public final void wait () throws java.lang.InterruptedException
public final void wait (long arg0,int arg1) throws java.lang.InterruptedException
public boolean equals (java.lang.Object arg0)
public java.lang.String toString ()
public native int hashCode ()
public final native java.lang.Class getClass ()
public final native void notify ()
public final native void notifyAll ()
【案例8】接下来让我们取得其他类的全部属性吧,最后我讲这些整理在一起,也就是通过class取得一个类的全部框架
【运行结果】:
===============本类属性========================
private java.lang.String sex;
===============实现的接口或者父类的属性========================
public static final java.lang.String name;
public static final int age;
【案例9】其实还可以通过反射调用其他类中的方法:
【运行结果】:
hello ,china
Rollen 20
【案例10】调用其他类的set和get方法
【运行结果】:
男
【案例11】通过反射操作属性
【案例12】通过反射取得并修改数组的信息:
【运行结果】:
数组类型: int
数组长度 5
数组的第一个元素: 1
修改之后数组第一个元素为: 100
【案例13】通过反射修改数组大小
【运行结果】:
数组长度为: 15
1 2 3 4 5 6 7 8 9 0 0 0 0 0 0 =====================
数组长度为: 8
a b c null null null null null
动态代理
【案例14】首先来看看如何获得类加载器:
【程序输出】:
类加载器 sun.misc.Launcher$AppClassLoader
其实在java中有三种类类加载器。
1)Bootstrap ClassLoader 此加载器采用c++编写,一般开发中很少见。
2)Extension ClassLoader 用来进行扩展类的加载,一般对应的是jre\lib\ext目录中的类
3)AppClassLoader 加载classpath指定的类,是最常用的加载器。同时也是java中默认的加载器。
如果想要完成动态代理,首先需要定义一个InvocationHandler接口的子类,已完成代理的具体操作。
【运行结果】:
Rollen 20
类的生命周期
在一个类编译完成之后,下一步就需要开始使用类,如果要使用一个类,肯定离不开JVM。在程序执行中JVM通过装载,链接,初始化这3个步骤完成。
类的装载是通过类加载器完成的,加载器将.class文件的二进制文件装入JVM的方法区,并且在堆区创建描述这个类的java.lang.Class对象。用来封装数据。 但是同一个类只会被类装载器装载以前
链接就是把二进制数据组装为可以运行的状态。
链接分为校验,准备,解析这3个阶段
校验一般用来确认此二进制文件是否适合当前的JVM(版本),
准备就是为静态成员分配内存空间,。并设置默认值
解析指的是转换常量池中的代码作为直接引用的过程,直到所有的符号引用都可以被运行程序使用(建立完整的对应关系)
完成之后,类型也就完成了初始化,初始化之后类的对象就可以正常使用了,直到一个对象不再使用之后,将被垃圾回收。释放空间。
当没有任何引用指向Class对象时就会被卸载,结束类的生命周期
将反射用于工厂模式
先来看看,如果不用反射的时候,的工厂模式吧:
http://www.cnblogs.com/rollenholt/archive/2011/08/18/2144851.html
这样,当我们在添加一个子类的时候,就需要修改工厂类了。如果我们添加太多的子类的时候,改的就会很多。
现在我们看看利用反射机制:
现在就算我们添加任意多个子类的时候,工厂类就不需要修改。
上面的爱吗虽然可以通过反射取得接口的实例,但是需要传入完整的包和类名。而且用户也无法知道一个接口有多少个可以使用的子类,所以我们通过属性文件的形式配置所需要的子类。
下面我们来看看: 结合属性文件的工厂模式
首先创建一个fruit.properties的资源文件,
内容为:
然后编写主类代码:
【运行结果】:Apple
下面开始正文。
【案例1】通过一个对象获得完整的包名和类名
package Reflect; /** * 通过一个对象获得完整的包名和类名 * */ class Demo{ //other codes... } class hello{ public static void main(String[] args) { Demo demo=new Demo(); System.out.println(demo.getClass().getName()); } }
【运行结果】:Reflect.Demo
添加一句:所有类的对象其实都是Class的实例。
【案例2】实例化Class类对象
package Reflect; class Demo{ //other codes... } class hello{ public static void main(String[] args) { Class<?> demo1=null; Class<?> demo2=null; Class<?> demo3=null; try{ //一般尽量采用这种形式 demo1=Class.forName("Reflect.Demo"); }catch(Exception e){ e.printStackTrace(); } demo2=new Demo().getClass(); demo3=Demo.class; System.out.println("类名称 "+demo1.getName()); System.out.println("类名称 "+demo2.getName()); System.out.println("类名称 "+demo3.getName()); System.out.println(demo1==demo2); System.out.println(demo2==demo3); System.out.println(demo1==demo3); } }
【运行结果】:
类名称 Reflect.Demo
类名称 Reflect.Demo
类名称 Reflect.Demo
true
true
true
【案例3】通过Class实例化其他类的对象
通过无参构造实例化对象
package Reflect; class Person{ private String name; private int age; public String getName() { return name; } public void setName(String name) { this.name = name; } public int getAge() { return age; } public void setAge(int age) { this.age = age; } @Override public String toString(){ return "["+this.name+" "+this.age+"]"; } } class hello{ public static void main(String[] args) { Class<?> demo=null; try{ demo=Class.forName("Reflect.Person"); }catch (Exception e) { e.printStackTrace(); } Person per=null; try { per=(Person)demo.newInstance(); } catch (InstantiationException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (IllegalAccessException e) { // TODO Auto-generated catch block e.printStackTrace(); } per.setName("Rollen"); per.setAge(20); System.out.println(per); } }
【运行结果】:
[Rollen 20]
newInstance()方法是通过类的无参构造方法创建对象的,但是注意一下,当我们把Person中的默认的无参构造函数取消的时候,比如自己定义只定义一个有参数的构造函数之后,会出现错误:
比如我定义了一个构造函数:
public Person(String name, int age) { this.age=age; this.name=name; }
然后继续运行上面的程序,会出现:
java.lang.InstantiationException: Reflect.Person
at java.lang.Class.newInstance0(Class.java:340)
at java.lang.Class.newInstance(Class.java:308)
at Reflect.hello.main(hello.java:39)
Exception in thread "main" java.lang.NullPointerException
at Reflect.hello.main(hello.java:47)
所以大家以后再编写使用Class实例化其他类的对象的时候,一定要自己定义无参的构造函数
【案例4】通过Class调用其他类中的构造函数 (也可以通过这种方式通过Class创建其他类的对象)
package Reflect; import java.lang.reflect.Constructor; class Person{ private String name; private int age; public Person() { } public Person(String name){ this.name=name; } public Person(int age){ this.age=age; } public Person(String name, int age) { this.age=age; this.name=name; } public String getName() { return name; } public int getAge() { return age; } @Override public String toString(){ return "["+this.name+" "+this.age+"]"; } } class hello{ public static void main(String[] args) { Class<?> demo=null; try{ demo=Class.forName("Reflect.Person"); }catch (Exception e) { e.printStackTrace(); } Person per1=null; Person per2=null; Person per3=null; Person per4=null; //取得全部的构造函数 Constructor<?> cons[]=demo.getConstructors(); try{ per1=(Person)cons[0].newInstance(); per2=(Person)cons[1].newInstance("Rollen"); per3=(Person)cons[2].newInstance(20); per4=(Person)cons[3].newInstance("Rollen",20); }catch(Exception e){ e.printStackTrace(); } System.out.println(per1); System.out.println(per2); System.out.println(per3); System.out.println(per4); } }
【运行结果】:
[null 0]
[Rollen 0]
[null 20]
[Rollen 20]
【案例5】
返回一个类实现的接口:
package Reflect; interface China{ public static final String name="Rollen"; public static int age=20; public void sayChina(); public void sayHello(String name, int age); } class Person implements China{ private String sex; public Person() { } public Person(String sex){ this.sex=sex; } public String getSex() { return sex; } public void setSex(String sex) { this.sex = sex; } @Override public void sayChina(){ System.out.println("hello ,china"); } @Override public void sayHello(String name, int age){ System.out.println(name+" "+age); } } class hello{ public static void main(String[] args) { Class<?> demo=null; try{ demo=Class.forName("Reflect.Person"); }catch (Exception e) { e.printStackTrace(); } //保存所有的接口 Class<?> intes[]=demo.getInterfaces(); for (int i = 0; i < intes.length; i++) { System.out.println("实现的接口 "+intes[i].getName()); } } }
【运行结果】:
实现的接口 Reflect.China
(注意,以下几个例子,都会用到这个例子的Person类,所以为节省篇幅,此处不再粘贴Person的代码部分,只粘贴主类hello的代码)
【案例6】:取得其他类中的父类
class hello{ public static void main(String[] args) { Class<?> demo=null; try{ demo=Class.forName("Reflect.Person"); }catch (Exception e) { e.printStackTrace(); } //取得父类 Class<?> temp=demo.getSuperclass(); System.out.println("继承的父类为: "+temp.getName()); } }
【运行结果】
继承的父类为: java.lang.Object
【案例7】:获得其他类中的全部构造函数
这个例子需要在程序开头添加import java.lang.reflect.*;
然后将主类编写为:
class hello{ public static void main(String[] args) { Class<?> demo=null; try{ demo=Class.forName("Reflect.Person"); }catch (Exception e) { e.printStackTrace(); } Constructor<?>cons[]=demo.getConstructors(); for (int i = 0; i < cons.length; i++) { System.out.println("构造方法: "+cons[i]); } } }
【运行结果】:
构造方法: Reflect.Person()
构造方法: Reflect.Person(java.lang.String)
但是细心的读者会发现,上面的构造函数没有public 或者private这一类的修饰符
下面这个例子我们就来获取修饰符
class hello{ public static void main(String[] args) { Class<?> demo=null; try{ demo=Class.forName("Reflect.Person"); }catch (Exception e) { e.printStackTrace(); } Constructor<?>cons[]=demo.getConstructors(); for (int i = 0; i < cons.length; i++) { Class<?> p[]=cons[i].getParameterTypes(); System.out.print("构造方法: "); int mo=cons[i].getModifiers(); System.out.print(Modifier.toString(mo)+" "); System.out.print(cons[i].getName()); System.out.print("("); for(int j=0;j<p.length;++j){ System.out.print(p[j].getName()+" arg"+i); if(j<p.length-1){ System.out.print(","); } } System.out.println("){}"); } } }
【运行结果】:
构造方法: public Reflect.Person(){}
构造方法: public Reflect.Person(java.lang.String arg1){}
有时候一个方法可能还有异常,呵呵。下面看看:
class hello{ public static void main(String[] args) { Class<?> demo=null; try{ demo=Class.forName("Reflect.Person"); }catch (Exception e) { e.printStackTrace(); } Method method[]=demo.getMethods(); for(int i=0;i<method.length;++i){ Class<?> returnType=method[i].getReturnType(); Class<?> para[]=method[i].getParameterTypes(); int temp=method[i].getModifiers(); System.out.print(Modifier.toString(temp)+" "); System.out.print(returnType.getName()+" "); System.out.print(method[i].getName()+" "); System.out.print("("); for(int j=0;j<para.length;++j){ System.out.print(para[j].getName()+" "+"arg"+j); if(j<para.length-1){ System.out.print(","); } } Class<?> exce[]=method[i].getExceptionTypes(); if(exce.length>0){ System.out.print(") throws "); for(int k=0;k<exce.length;++k){ System.out.print(exce[k].getName()+" "); if(k<exce.length-1){ System.out.print(","); } } }else{ System.out.print(")"); } System.out.println(); } } }
【运行结果】:
public java.lang.String getSex ()
public void setSex (java.lang.String arg0)
public void sayChina ()
public void sayHello (java.lang.String arg0,int arg1)
public final native void wait (long arg0) throws java.lang.InterruptedException
public final void wait () throws java.lang.InterruptedException
public final void wait (long arg0,int arg1) throws java.lang.InterruptedException
public boolean equals (java.lang.Object arg0)
public java.lang.String toString ()
public native int hashCode ()
public final native java.lang.Class getClass ()
public final native void notify ()
public final native void notifyAll ()
【案例8】接下来让我们取得其他类的全部属性吧,最后我讲这些整理在一起,也就是通过class取得一个类的全部框架
class hello { public static void main(String[] args) { Class<?> demo = null; try { demo = Class.forName("Reflect.Person"); } catch (Exception e) { e.printStackTrace(); } System.out.println("===============本类属性========================"); // 取得本类的全部属性 Field[] field = demo.getDeclaredFields(); for (int i = 0; i < field.length; i++) { // 权限修饰符 int mo = field[i].getModifiers(); String priv = Modifier.toString(mo); // 属性类型 Class<?> type = field[i].getType(); System.out.println(priv + " " + type.getName() + " " + field[i].getName() + ";"); } System.out.println("===============实现的接口或者父类的属性========================"); // 取得实现的接口或者父类的属性 Field[] filed1 = demo.getFields(); for (int j = 0; j < filed1.length; j++) { // 权限修饰符 int mo = filed1[j].getModifiers(); String priv = Modifier.toString(mo); // 属性类型 Class<?> type = filed1[j].getType(); System.out.println(priv + " " + type.getName() + " " + filed1[j].getName() + ";"); } } }
【运行结果】:
===============本类属性========================
private java.lang.String sex;
===============实现的接口或者父类的属性========================
public static final java.lang.String name;
public static final int age;
【案例9】其实还可以通过反射调用其他类中的方法:
class hello { public static void main(String[] args) { Class<?> demo = null; try { demo = Class.forName("Reflect.Person"); } catch (Exception e) { e.printStackTrace(); } try{ //调用Person类中的sayChina方法 Method method=demo.getMethod("sayChina"); method.invoke(demo.newInstance()); //调用Person的sayHello方法 method=demo.getMethod("sayHello", String.class,int.class); method.invoke(demo.newInstance(),"Rollen",20); }catch (Exception e) { e.printStackTrace(); } } }
【运行结果】:
hello ,china
Rollen 20
【案例10】调用其他类的set和get方法
class hello { public static void main(String[] args) { Class<?> demo = null; Object obj=null; try { demo = Class.forName("Reflect.Person"); } catch (Exception e) { e.printStackTrace(); } try{ obj=demo.newInstance(); }catch (Exception e) { e.printStackTrace(); } setter(obj,"Sex","男",String.class); getter(obj,"Sex"); } /** * @param obj * 操作的对象 * @param att * 操作的属性 * */ public static void getter(Object obj, String att) { try { Method method = obj.getClass().getMethod("get" + att); System.out.println(method.invoke(obj)); } catch (Exception e) { e.printStackTrace(); } } /** * @param obj * 操作的对象 * @param att * 操作的属性 * @param value * 设置的值 * @param type * 参数的属性 * */ public static void setter(Object obj, String att, Object value, Class<?> type) { try { Method method = obj.getClass().getMethod("set" + att, type); method.invoke(obj, value); } catch (Exception e) { e.printStackTrace(); } } }// end class
【运行结果】:
男
【案例11】通过反射操作属性
class hello { public static void main(String[] args) throws Exception { Class<?> demo = null; Object obj = null; demo = Class.forName("Reflect.Person"); obj = demo.newInstance(); Field field = demo.getDeclaredField("sex"); field.setAccessible(true); field.set(obj, "男"); System.out.println(field.get(obj)); } }// end class
【案例12】通过反射取得并修改数组的信息:
import java.lang.reflect.*; class hello{ public static void main(String[] args) { int[] temp={1,2,3,4,5}; Class<?>demo=temp.getClass().getComponentType(); System.out.println("数组类型: "+demo.getName()); System.out.println("数组长度 "+Array.getLength(temp)); System.out.println("数组的第一个元素: "+Array.get(temp, 0)); Array.set(temp, 0, 100); System.out.println("修改之后数组第一个元素为: "+Array.get(temp, 0)); } }
【运行结果】:
数组类型: int
数组长度 5
数组的第一个元素: 1
修改之后数组第一个元素为: 100
【案例13】通过反射修改数组大小
class hello{ public static void main(String[] args) { int[] temp={1,2,3,4,5,6,7,8,9}; int[] newTemp=(int[])arrayInc(temp,15); print(newTemp); System.out.println("====================="); String[] atr={"a","b","c"}; String[] str1=(String[])arrayInc(atr,8); print(str1); } /** * 修改数组大小 * */ public static Object arrayInc(Object obj,int len){ Class<?>arr=obj.getClass().getComponentType(); Object newArr=Array.newInstance(arr, len); int co=Array.getLength(obj); System.arraycopy(obj, 0, newArr, 0, co); return newArr; } /** * 打印 * */ public static void print(Object obj){ Class<?>c=obj.getClass(); if(!c.isArray()){ return; } System.out.println("数组长度为: "+Array.getLength(obj)); for (int i = 0; i < Array.getLength(obj); i++) { System.out.print(Array.get(obj, i)+" "); } } }
【运行结果】:
数组长度为: 15
1 2 3 4 5 6 7 8 9 0 0 0 0 0 0 =====================
数组长度为: 8
a b c null null null null null
动态代理
【案例14】首先来看看如何获得类加载器:
class test{ } class hello{ public static void main(String[] args) { test t=new test(); System.out.println("类加载器 "+t.getClass().getClassLoader().getClass().getName()); } }
【程序输出】:
类加载器 sun.misc.Launcher$AppClassLoader
其实在java中有三种类类加载器。
1)Bootstrap ClassLoader 此加载器采用c++编写,一般开发中很少见。
2)Extension ClassLoader 用来进行扩展类的加载,一般对应的是jre\lib\ext目录中的类
3)AppClassLoader 加载classpath指定的类,是最常用的加载器。同时也是java中默认的加载器。
如果想要完成动态代理,首先需要定义一个InvocationHandler接口的子类,已完成代理的具体操作。
package Reflect; import java.lang.reflect.*; //定义项目接口 interface Subject { public String say(String name, int age); } // 定义真实项目 class RealSubject implements Subject { @Override public String say(String name, int age) { return name + " " + age; } } class MyInvocationHandler implements InvocationHandler { private Object obj = null; public Object bind(Object obj) { this.obj = obj; return Proxy.newProxyInstance(obj.getClass().getClassLoader(), obj .getClass().getInterfaces(), this); } @Override public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { Object temp = method.invoke(this.obj, args); return temp; } } class hello { public static void main(String[] args) { MyInvocationHandler demo = new MyInvocationHandler(); Subject sub = (Subject) demo.bind(new RealSubject()); String info = sub.say("Rollen", 20); System.out.println(info); } }
【运行结果】:
Rollen 20
类的生命周期
在一个类编译完成之后,下一步就需要开始使用类,如果要使用一个类,肯定离不开JVM。在程序执行中JVM通过装载,链接,初始化这3个步骤完成。
类的装载是通过类加载器完成的,加载器将.class文件的二进制文件装入JVM的方法区,并且在堆区创建描述这个类的java.lang.Class对象。用来封装数据。 但是同一个类只会被类装载器装载以前
链接就是把二进制数据组装为可以运行的状态。
链接分为校验,准备,解析这3个阶段
校验一般用来确认此二进制文件是否适合当前的JVM(版本),
准备就是为静态成员分配内存空间,。并设置默认值
解析指的是转换常量池中的代码作为直接引用的过程,直到所有的符号引用都可以被运行程序使用(建立完整的对应关系)
完成之后,类型也就完成了初始化,初始化之后类的对象就可以正常使用了,直到一个对象不再使用之后,将被垃圾回收。释放空间。
当没有任何引用指向Class对象时就会被卸载,结束类的生命周期
将反射用于工厂模式
先来看看,如果不用反射的时候,的工厂模式吧:
http://www.cnblogs.com/rollenholt/archive/2011/08/18/2144851.html
/** * @author Rollen-Holt 设计模式之 工厂模式 */ interface fruit{ public abstract void eat(); } class Apple implements fruit{ public void eat(){ System.out.println("Apple"); } } class Orange implements fruit{ public void eat(){ System.out.println("Orange"); } } // 构造工厂类 // 也就是说以后如果我们在添加其他的实例的时候只需要修改工厂类就行了 class Factory{ public static fruit getInstance(String fruitName){ fruit f=null; if("Apple".equals(fruitName)){ f=new Apple(); } if("Orange".equals(fruitName)){ f=new Orange(); } return f; } } class hello{ public static void main(String[] a){ fruit f=Factory.getInstance("Orange"); f.eat(); } }
这样,当我们在添加一个子类的时候,就需要修改工厂类了。如果我们添加太多的子类的时候,改的就会很多。
现在我们看看利用反射机制:
package Reflect; interface fruit{ public abstract void eat(); } class Apple implements fruit{ public void eat(){ System.out.println("Apple"); } } class Orange implements fruit{ public void eat(){ System.out.println("Orange"); } } class Factory{ public static fruit getInstance(String ClassName){ fruit f=null; try{ f=(fruit)Class.forName(ClassName).newInstance(); }catch (Exception e) { e.printStackTrace(); } return f; } } class hello{ public static void main(String[] a){ fruit f=Factory.getInstance("Reflect.Apple"); if(f!=null){ f.eat(); } } }
现在就算我们添加任意多个子类的时候,工厂类就不需要修改。
上面的爱吗虽然可以通过反射取得接口的实例,但是需要传入完整的包和类名。而且用户也无法知道一个接口有多少个可以使用的子类,所以我们通过属性文件的形式配置所需要的子类。
下面我们来看看: 结合属性文件的工厂模式
首先创建一个fruit.properties的资源文件,
内容为:
apple=Reflect.Apple orange=Reflect.Orange
然后编写主类代码:
package Reflect; import java.io.*; import java.util.*; interface fruit{ public abstract void eat(); } class Apple implements fruit{ public void eat(){ System.out.println("Apple"); } } class Orange implements fruit{ public void eat(){ System.out.println("Orange"); } } //操作属性文件类 class init{ public static Properties getPro() throws FileNotFoundException, IOException{ Properties pro=new Properties(); File f=new File("fruit.properties"); if(f.exists()){ pro.load(new FileInputStream(f)); }else{ pro.setProperty("apple", "Reflect.Apple"); pro.setProperty("orange", "Reflect.Orange"); pro.store(new FileOutputStream(f), "FRUIT CLASS"); } return pro; } } class Factory{ public static fruit getInstance(String ClassName){ fruit f=null; try{ f=(fruit)Class.forName(ClassName).newInstance(); }catch (Exception e) { e.printStackTrace(); } return f; } } class hello{ public static void main(String[] a) throws FileNotFoundException, IOException{ Properties pro=init.getPro(); fruit f=Factory.getInstance(pro.getProperty("apple")); if(f!=null){ f.eat(); } } }
【运行结果】:Apple
相关推荐
动态加载类是Java反射机制的重要应用场景之一。通过`Class.forName()`方法或者`ClassLoader`的`loadClass()`方法,可以根据类名字符串在运行时加载类。 #### 七、操作成员 - **创建对象**:使用`Class`对象的`new...
### Java反射机制详解 #### 一、反射的基本概念与历史背景 反射的概念最早由Smith在1982年提出,其核心思想是程序有能力访问、检测甚至修改自身的状态和行为。这种能力一经提出,迅速成为了计算机科学领域的研究...
总之,Java反射机制是Java程序员必备的技能之一,它提供了对程序运行时类型信息的访问和操作,极大地扩展了Java代码的灵活性和可扩展性。通过深入学习和实践,我们可以更好地理解和利用这一强大的工具。
Java反射机制是Java编程语言中的一个强大特性,它允许程序在运行时检查和操作类、接口、对象等的内部结构。通过反射,开发者可以动态地获取类的信息并调用其方法,创建对象,访问私有成员,甚至改变类的行为。在深入...
### Java反射机制详解 #### 一、什么是Java的反射机制 Java反射机制是Java语言的一种重要特性,使得Java成为了一种动态性很强的语言。通过反射,可以在程序运行时获取类的信息,包括类名、父类、接口、字段、方法...
### Java反射机制详解 #### 一、反射机制是什么 反射机制是Java编程语言的一个核心特性,它允许程序在运行时动态地获取类的信息,并且能够动态地创建对象和调用对象的方法。简单来说,反射机制使得Java程序可以...
Java反射机制允许运行中的程序检查自身,并能直接操作程序的内部属性。这是其他许多编程语言(如Pascal、C或C++)不具备的能力。 **1.1 Reflection的工作机制** 为了展示反射如何工作,我们来看一个简单的例子: ...
Java反射机制是Java编程语言中的一个强大特性,它允许程序在运行时检查和操作类、接口、字段和方法的信息,甚至能够在不知道具体类名的情况下创建和调用对象的方法。这为程序员提供了高度的灵活性和动态性,使得Java...
Java反射机制是Java语言提供的一种强大功能,它允许运行中的Java程序对自身进行检查并且可以直接操作程序的内部属性。在Java中,反射机制的核心类是`java.lang.Class`,它代表了运行时的类信息。通过Class对象,我们...
Java反射机制是Java语言的重要组成部分之一,它赋予了Java一定的动态特性。通过反射机制,开发者可以在运行时获取类的信息并进行各种操作,极大地提高了Java应用程序的灵活性和扩展性。了解并掌握Java反射机制对于...
Java反射机制是Java语言提供的一种基础功能,通过反射机制,可以在运行时分析类的属性和方法,并动态调用对象的方法。在Java的java.lang.reflect包中包含了一系列的类来支持反射机制的实现,下面详细介绍一下这些类...
Java反射机制是Java编程语言中的一个强大特性,它允许程序在运行时检查并操作类、接口、字段和方法。在Java中,反射机制的核心类是`java.lang.Class`,它是所有类的公共父类,提供了获取类信息和操作类对象的能力。...
Java反射机制是Java编程语言中的一个强大工具,它允许程序在运行时检查和操作类、接口、对象等的内部信息。在Android系统中,Java反射机制同样被广泛应用,尤其是在动态加载类、处理不确定类型的对象、调用私有方法...
Java反射机制是Java编程语言的核心特性之一,它赋予了程序在运行时检查和操作对象的能力。反射机制使得Java代码能够动态地获取类的信息(如类名、方法、字段),并且能够在运行时创建和调用对象的方法,这为编程带来...
Java反射机制是一项强大而灵活的功能,它使得Java程序能够在运行时动态地检查和操作类及其成员。在实际开发中,反射机制在框架设计、动态代理、插件化开发、单元测试和配置与注解处理等方面有着广泛的应用。然而,...
### 候捷谈Java反射机制 #### Java反射机制概览 Java反射机制是一种强大的运行时功能,使得Java能够在程序执行过程中动态地获取类的信息并操纵类的对象。这一特性极大地扩展了Java语言的能力,使其更加灵活多变。...
总结,Java反射机制是其强大之处,它为开发者提供了超越静态类型系统的灵活性。然而,也应谨慎使用,避免滥用反射导致的性能下降和潜在的安全隐患。通过阅读"JAVA私塾笔记整理——反射机制(Reflection)",你可以更...