`
isiqi
  • 浏览: 16614842 次
  • 性别: Icon_minigender_1
  • 来自: 济南
社区版块
存档分类
最新评论

Kaplan-Meier estimator(From Wikipedia, the free encyclopedia)

阅读更多

Kaplan-Meier estimator

From Wikipedia, the free encyclopedia

Jump to: navigation, search
<!-- start content -->

The Kaplan-Meier estimator (also known as the product limit estimator) estimates the survival function from life-time data. In medical research, it might be used to measure the fraction of patients living for a certain amount of time after treatment. An economist might measure the length of time people remain unemployed after a job loss. An engineer might measure the time until failure of machine parts.

A plot of the Kaplan-Meier estimate of the survival function is a series of horizontal steps of declining magnitude which, when a large enough sample is taken, approaches the true survival function for that population. The value of the survival function between successive distinct sampled observations ("clicks") is assumed to be constant.

An example of a Kaplan-Meier plot for two conditions associated with patient survival

An important advantage of the Kaplan-Meier curve is that the method can take into account "censored" data — losses from the sample before the final outcome is observed (for instance, if a patient withdraws from a study). On the plot, small vertical tick-marks indicate losses, where patient data has been censored. When no truncation or censoring occurs, the Kaplan-Meier curve is equivalent to the empirical distribution.

In medical statistics, a typical application might involve grouping patients into categories, for instance, those with Gene A profile and those with Gene B profile. In the graph, patients with Gene B die much more quickly than those with gene A. After two years about 80% of the Gene A patients still survive, but less than half of patients with Gene B.

[edit] Formulation

Let S(t) be the probability that an item from a given population will have a lifetime exceeding t. For a sample from this population of size N let the observed times until death of N sample members be

Corresponding to each ti is ni, the number "at risk" just prior to time ti, and di, the number of deaths at time ti.

Note that the intervals between each time typically will not be uniform. For example, a small data set might begin with 10 cases, have a death at Day 3, a loss (censored case) at Day 9, and another death at Day 11. Then we have (t1 = 3,t2 = 11), (n1 = 10,n2 = 8), and (d1 = 1,d2 = 1).

The Kaplan-Meier estimator is the nonparametric maximum likelihood estimate of S(t). It is a product of the form

When there is no censoring, ni is just the number of survivors just prior to time ti. With censoring, ni is the number of survivors less the number of losses (censored cases). It is only those surviving cases that are still being observed (have not yet been censored) that are "at risk" of an (observed) death.

There is an alternate definition that is sometimes used, namely

The two definitions differ only at the observed event times. The latter definition is right-continuous whereas the former definition is left-continuous.

Let T be the random variable that measures the time of failure and let F(t) be its cumulative distribution function. Note that

Consequently, the right-continuous definition of may be preferred in order to make the estimate compatible with a right-continuous estimate of F(t).

[edit] Statistical considerations

The Kaplan-Meier estimator is a statistic, and several estimators are used to approximate its variance. One of the most common such estimators is Greenwood's formula:

In some cases, one may wish to compare different Kaplan-Meier curves. This may be done by several methods including:

<!-- NewPP limit report Preprocessor node count: 216/1000000 Post-expand include size: 3500/2048000 bytes Template argument size: 1218/2048000 bytes Expensive parser function count: 1/500 --><!-- Saved in parser cache with key enwiki:pcache:idhash:3168650-0!1!0!default!!en!2 and timestamp 20090406062601 --> <!-- end content -->
分享到:
评论

相关推荐

    论文研究 - 竞争风险中Nelson-Aalen和Kaplan-Meier估计的渐近正态性

    本文研究了在存在独立权利审查的竞争风险背景下,Nelson-Aalen和Kaplan-Meier估计的渐近正态性。 为了证明我们的结果,我们使用罗贝勒多定理,这使将中心极限定理应用到某些类型的mar上成为可能。 根据获得的结果,...

    KMWin:适用于Windows的Kaplan-Meier-开源

    KMWin(适用于Windows的Kaplan-Meier)是一种方便的工具,可用于以图形方式表示Kaplan-Meier生存时间分析的结果。 该程序基于统计软件环境R,并提供易于使用的图形界面。 作为简介,请参见...

    KMplot:绘制生存函数的 Kaplan-Meier 估计-matlab开发

    绘制生存函数的 Kaplan-Meier 估计生存时间是测量从定义的起始点到给定事件发生的随访时间的数据,例如从缓解期开始到结束的时间或从疾病诊断到死亡的时间。 通常不能应用标准的统计技术,因为基础分布很少是正态...

    interactive-KM:交互式 Kaplan Meier 生存图

    交互式 Kaplan-Meier 生存图是一种用于展示生存分析数据的有效可视化工具,尤其在医学、生物统计学和社会科学等领域广泛应用。Kaplan-Meier 方法是估计生存函数的一种非参数方法,它能够处理删失数据,即对于某些...

    生存函数的 Kaplan-Meier 估计的 GUI:生存函数的 Kaplan-Meier 估计的简单 GUI。-matlab开发

    此 GUI 基于以下 matlab 代码: http : //www.mathworks.com/matlabcentral/fileexchange/22293-kmplot 档案里有针对中国人的介绍。

    论文研究 - 多发性骨髓瘤患者生存时间的参数和非参数分析

    然后,我们估算了生存概率,并将其与常用的非参数生存时间非参数Kaplan-Meier生存分析进行了比较。 两种方法的生存概率估计值的比较显示,与Kaplan-Meier相比,参数化方法的生存概率估计值更好。 参数生存分析更加...

    SPSS生存分析过程.doc

    在SPSS软件中,生存分析可以通过"Survival"菜单实现,提供了Life Tables过程、Kaplan-Meier过程、Cox Regression过程和Cox with Time-Dep Cov过程。这里主要介绍Life Tables过程和Kaplan-Meier过程。 1. Life ...

    SPSS生存分析过程.pdf

    SPSS 提供了多种生存分析过程,包括 Life Tables 过程、Kaplan-Meier 过程、Cox Regression 过程和 Cox w/Time-Dep Cov 过程。本文将主要介绍 Life Tables 过程和 Kaplan-Meier 过程。 Life Tables 过程是生存分析...

    完整版数据挖掘数据分析课程SPSS软件实习实训实战教材教程 第13章 活着-Survival菜单详解(上).rar

    总之,"活着:Survival菜单详解(上)"这一章将带领我们探索SPSS在生存分析领域的强大功能,帮助我们掌握生存函数的计算、Kaplan-Meier曲线的绘制,以及Cox比例风险模型的建立。通过对这一章的学习,不仅可以提升...

    X~tile软件的操作流程.doc

    在 Kaplan-Meier 曲线的基础上,点击“2Pop X-tile Plot”按钮,软件将自动找到最佳的 cutoff 值,并生成两条线(高表达-低表达)。如果需要更多的分组,可以点击“3Pop X-tile Plot”按钮,软件将自动找到最佳的 ...

    生存分析.doc

    这个文档主要介绍了三种生存分析的方法:生命表法(Life Tables)、Kaplan-Meier 法和Cox回归法。 **生命表法**是一种基础的生存分析方法,主要用于计算不同时间点的生存概率。在案例14-1中,研究人员比较了中药加...

    论文研究 - SPARC表达作为胰腺导管腺癌的预后标志。

    方法:采用免疫化学方法检测肿瘤中SPARC的表达,并通过Kaplan-Meier和Cox比例风险模型分析SPARC对预后的影响。 结果:在肿瘤和间质中识别到的SPARC阳性表达分别为31.33%和64.66%。 SPARC在基质中的表达与分化,...

    josh-kaplan-intro-matlab-octave-archive-refs-heads-master.zip

    这个名为"josh-kaplan-intro-matlab-octave-archive-refs-heads-master.zip"的压缩包,很可能是Josh Kaplan提供的一个教程资源,旨在引导初学者入门MATLAB和Octave。 MATLAB是由MathWorks公司开发的一种交互式程序...

    双基因生存曲线_R语言绘制SCI图的输入文件及代码.rar

    首先,生存曲线是基于生存分析的一种图形表示方法,通常使用Kaplan-Meier估计来构建。生存分析主要处理时间至事件的数据,如患者的生存时间或疾病复发时间。在生物医学领域,它可以帮助研究人员理解不同基因表达水平...

    基于数据挖掘分析HMGB1表达对胃癌预后的影响.pdf

    为了达成这一目标,研究者从Oncomine数据库中提取了HMGB1在胃癌组织和正常组织中的转录水平变化数据,并运用Kaplan-Meier Plotter数据库,分析了HMGB1的mRNA表达水平与胃癌预后之间的关系。 首先,文章指出了研究的...

    PyPI 官网下载 | lifelines-0.4.4.0-cp33-none-win_amd64.whl

    在`lifelines`中,用户可以进行多种类型的生存分析,包括Kaplan-Meier估计、Cox比例风险模型、Aalen加权模型等。这些模型可以帮助我们理解影响事件发生时间的因素,并进行预测。 Kaplan-Meier估计是生存分析中最...

    matlab开发-Kaplanmeierforrightandor leftandor intervalcendeddata(卡普兰迈耶或左方和或时间审查数据)

    matlab开发-Kaplanmeierforrightandor leftandor intervalcendeddata(卡普兰迈耶或左方和或时间审查数据)。通过r为左/右/区间截尾数据提供产品极限估计量(kaplan-meier)。

    KaplanMeier:Python中的KaplanMeier曲线

    《Python中的Kaplan-Meier生存分析方法详解》 Kaplan-Meier(KM)曲线是统计学中一种广泛用于分析生存数据的方法,尤其在医学、生物统计学和社会科学等领域有着重要的应用。在Python编程环境中,我们可以利用各种库...

    SPSS生存分析过程

    本文将详细解读SPSS中的生存分析过程,特别是LifeTables过程和Kaplan-Meier过程,帮助读者更好地理解和应用这些工具。 #### LifeTables过程解析 LifeTables过程是SPSS中用于生存分析的基础工具之一,主要功能包括...

Global site tag (gtag.js) - Google Analytics