#ifndef __RIJNDAEL_ALG_H
#define __RIJNDAEL_ALG_H
#define MAXBC (256/32)
#define MAXKC (256/32)
#define MAXROUNDS 14
typedef unsigned char word8;
typedef unsigned short word16;
typedef unsigned long word32;
int rijndaelKeySched (word8 k[4][MAXKC], int keyBits, int blockBits,
word8 rk[MAXROUNDS+1][4][MAXBC]);
int rijndaelEncrypt (word8 a[4][MAXBC], int keyBits, int blockBits,
word8 rk[MAXROUNDS+1][4][MAXBC]);
int rijndaelEncryptRound (word8 a[4][MAXBC], int keyBits, int blockBits,
word8 rk[MAXROUNDS+1][4][MAXBC], int rounds);
int rijndaelDecrypt (word8 a[4][MAXBC], int keyBits, int blockBits,
word8 rk[MAXROUNDS+1][4][MAXBC]);
int rijndaelDecryptRound (word8 a[4][MAXBC], int keyBits, int blockBits,
word8 rk[MAXROUNDS+1][4][MAXBC], int rounds);
#endif /* __RIJNDAEL_ALG_H */
/* rijndael-alg-ref.c v2.0 August '99
* Reference ANSI C code
* authors: Paulo Barreto
* Vincent Rijmen, K.U.Leuven
*
* This code is placed in the public domain.
*/
#include "stdafx.h"
#include "stdio.h"
#include "stdlib.h"
#define MAXBC (256/32)
#define MAXKC (256/32)
#define MAXROUNDS 14
typedef unsigned char word8;
typedef unsigned short word16;
typedef unsigned long word32;
#define SC ((BC - 4) >> 1)
word8 Logtable[256] = {
0, 0, 25, 1, 50, 2, 26, 198, 75, 199, 27, 104, 51, 238, 223, 3,
100, 4, 224, 14, 52, 141, 129, 239, 76, 113, 8, 200, 248, 105, 28, 193,
125, 194, 29, 181, 249, 185, 39, 106, 77, 228, 166, 114, 154, 201, 9, 120,
101, 47, 138, 5, 33, 15, 225, 36, 18, 240, 130, 69, 53, 147, 218, 142,
150, 143, 219, 189, 54, 208, 206, 148, 19, 92, 210, 241, 64, 70, 131, 56,
102, 221, 253, 48, 191, 6, 139, 98, 179, 37, 226, 152, 34, 136, 145, 16,
126, 110, 72, 195, 163, 182, 30, 66, 58, 107, 40, 84, 250, 133, 61, 186,
43, 121, 10, 21, 155, 159, 94, 202, 78, 212, 172, 229, 243, 115, 167, 87,
175, 88, 168, 80, 244, 234, 214, 116, 79, 174, 233, 213, 231, 230, 173, 232,
44, 215, 117, 122, 235, 22, 11, 245, 89, 203, 95, 176, 156, 169, 81, 160,
127, 12, 246, 111, 23, 196, 73, 236, 216, 67, 31, 45, 164, 118, 123, 183,
204, 187, 62, 90, 251, 96, 177, 134, 59, 82, 161, 108, 170, 85, 41, 157,
151, 178, 135, 144, 97, 190, 220, 252, 188, 149, 207, 205, 55, 63, 91, 209,
83, 57, 132, 60, 65, 162, 109, 71, 20, 42, 158, 93, 86, 242, 211, 171,
68, 17, 146, 217, 35, 32, 46, 137, 180, 124, 184, 38, 119, 153, 227, 165,
103, 74, 237, 222, 197, 49, 254, 24, 13, 99, 140, 128, 192, 247, 112, 7,
};
word8 Alogtable[256] = {
1, 3, 5, 15, 17, 51, 85, 255, 26, 46, 114, 150, 161, 248, 19, 53,
95, 225, 56, 72, 216, 115, 149, 164, 247, 2, 6, 10, 30, 34, 102, 170,
229, 52, 92, 228, 55, 89, 235, 38, 106, 190, 217, 112, 144, 171, 230, 49,
83, 245, 4, 12, 20, 60, 68, 204, 79, 209, 104, 184, 211, 110, 178, 205,
76, 212, 103, 169, 224, 59, 77, 215, 98, 166, 241, 8, 24, 40, 120, 136,
131, 158, 185, 208, 107, 189, 220, 127, 129, 152, 179, 206, 73, 219, 118, 154,
181, 196, 87, 249, 16, 48, 80, 240, 11, 29, 39, 105, 187, 214, 97, 163,
254, 25, 43, 125, 135, 146, 173, 236, 47, 113, 147, 174, 233, 32, 96, 160,
251, 22, 58, 78, 210, 109, 183, 194, 93, 231, 50, 86, 250, 21, 63, 65,
195, 94, 226, 61, 71, 201, 64, 192, 91, 237, 44, 116, 156, 191, 218, 117,
159, 186, 213, 100, 172, 239, 42, 126, 130, 157, 188, 223, 122, 142, 137, 128,
155, 182, 193, 88, 232, 35, 101, 175, 234, 37, 111, 177, 200, 67, 197, 84,
252, 31, 33, 99, 165, 244, 7, 9, 27, 45, 119, 153, 176, 203, 70, 202,
69, 207, 74, 222, 121, 139, 134, 145, 168, 227, 62, 66, 198, 81, 243, 14,
18, 54, 90, 238, 41, 123, 141, 140, 143, 138, 133, 148, 167, 242, 13, 23,
57, 75, 221, 124, 132, 151, 162, 253, 28, 36, 108, 180, 199, 82, 246, 1,
};
word8 S[256] = {
99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, 118,
202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, 114, 192,
183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, 216, 49, 21,
4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226, 235, 39, 178, 117,
9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214, 179, 41, 227, 47, 132,
83, 209, 0, 237, 32, 252, 177, 91, 106, 203, 190, 57, 74, 76, 88, 207,
208, 239, 170, 251, 67, 77, 51, 133, 69, 249, 2, 127, 80, 60, 159, 168,
81, 163, 64, 143, 146, 157, 56, 245, 188, 182, 218, 33, 16, 255, 243, 210,
205, 12, 19, 236, 95, 151, 68, 23, 196, 167, 126, 61, 100, 93, 25, 115,
96, 129, 79, 220, 34, 42, 144, 136, 70, 238, 184, 20, 222, 94, 11, 219,
224, 50, 58, 10, 73, 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121,
231, 200, 55, 109, 141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8,
186, 120, 37, 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138,
112, 62, 181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158,
225, 248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223,
140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, 22,
};
word8 Si[256] = {
82, 9, 106, 213, 48, 54, 165, 56, 191, 64, 163, 158, 129, 243, 215, 251,
124, 227, 57, 130, 155, 47, 255, 135, 52, 142, 67, 68, 196, 222, 233, 203,
84, 123, 148, 50, 166, 194, 35, 61, 238, 76, 149, 11, 66, 250, 195, 78,
8, 46, 161, 102, 40, 217, 36, 178, 118, 91, 162, 73, 109, 139, 209, 37,
114, 248, 246, 100, 134, 104, 152, 22, 212, 164, 92, 204, 93, 101, 182, 146,
108, 112, 72, 80, 253, 237, 185, 218, 94, 21, 70, 87, 167, 141, 157, 132,
144, 216, 171, 0, 140, 188, 211, 10, 247, 228, 88, 5, 184, 179, 69, 6,
208, 44, 30, 143, 202, 63, 15, 2, 193, 175, 189, 3, 1, 19, 138, 107,
58, 145, 17, 65, 79, 103, 220, 234, 151, 242, 207, 206, 240, 180, 230, 115,
150, 172, 116, 34, 231, 173, 53, 133, 226, 249, 55, 232, 28, 117, 223, 110,
71, 241, 26, 113, 29, 41, 197, 137, 111, 183, 98, 14, 170, 24, 190, 27,
252, 86, 62, 75, 198, 210, 121, 32, 154, 219, 192, 254, 120, 205, 90, 244,
31, 221, 168, 51, 136, 7, 199, 49, 177, 18, 16, 89, 39, 128, 236, 95,
96, 81, 127, 169, 25, 181, 74, 13, 45, 229, 122, 159, 147, 201, 156, 239,
160, 224, 59, 77, 174, 42, 245, 176, 200, 235, 187, 60, 131, 83, 153, 97,
23, 43, 4, 126, 186, 119, 214, 38, 225, 105, 20, 99, 85, 33, 12, 125,
};
word8 iG[4][4] = {
0x0e, 0x09, 0x0d, 0x0b,
0x0b, 0x0e, 0x09, 0x0d,
0x0d, 0x0b, 0x0e, 0x09,
0x09, 0x0d, 0x0b, 0x0e,
};
word32 rcon[30] = {
0x01,0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, };
static word8 shifts[3][4][2] = {
0, 0,
1, 3,
2, 2,
3, 1,
0, 0,
1, 5,
2, 4,
3, 3,
0, 0,
1, 7,
3, 5,
4, 4
};
word8 mul(word8 a, word8 b) {
/* multiply two elements of GF(2^m)
* needed for MixColumn and InvMixColumn
*/
if (a && b) return Alogtable[(Logtable[a] + Logtable[b])%255];
else return 0;
}
void KeyAddition(word8 a[4][MAXBC], word8 rk[4][MAXBC], word8 BC) {
/* Exor corresponding text input and round key input bytes
*/
int i, j;
for(i = 0; i < 4; i++)
for(j = 0; j < BC; j++) a[i][j] ^= rk[i][j];
}
void ShiftRow(word8 a[4][MAXBC], word8 d, word8 BC) {
/* Row 0 remains unchanged
* The other three rows are shifted a variable amount
*/
word8 tmp[MAXBC];
int i, j;
for(i = 1; i < 4; i++) {
for(j = 0; j < BC; j++) tmp[j] = a[i][(j + shifts[SC][i][d]) % BC];
for(j = 0; j < BC; j++) a[i][j] = tmp[j];
}
}
void Substitution(word8 a[4][MAXBC], word8 box[256], word8 BC) {
/* Replace every byte of the input by the byte at that place
* in the nonlinear S-box
*/
int i, j;
for(i = 0; i < 4; i++)
for(j = 0; j < BC; j++) a[i][j] = box[a[i][j]] ;
}
void MixColumn(word8 a[4][MAXBC], word8 BC) {
/* Mix the four bytes of every column in a linear way
*/
word8 b[4][MAXBC];
int i, j;
for(j = 0; j < BC; j++)
for(i = 0; i < 4; i++)
b[i][j] = mul(2,a[i][j])
^ mul(3,a[(i + 1) % 4][j])
^ a[(i + 2) % 4][j]
^ a[(i + 3) % 4][j];
for(i = 0; i < 4; i++)
for(j = 0; j < BC; j++) a[i][j] = b[i][j];
}
void InvMixColumn(word8 a[4][MAXBC], word8 BC) {
/* Mix the four bytes of every column in a linear way
* This is the opposite operation of Mixcolumn
*/
word8 b[4][MAXBC];
int i, j;
for(j = 0; j < BC; j++)
for(i = 0; i < 4; i++)
b[i][j] = mul(0xe,a[i][j])
^ mul(0xb,a[(i + 1) % 4][j])
^ mul(0xd,a[(i + 2) % 4][j])
^ mul(0x9,a[(i + 3) % 4][j]);
for(i = 0; i < 4; i++)
for(j = 0; j < BC; j++) a[i][j] = b[i][j];
}
int rijndaelKeySched (word8 k[4][MAXKC], int keyBits, int blockBits, word8 W[MAXROUNDS+1][4][MAXBC]) {
/* Calculate the necessary round keys
* The number of calculations depends on keyBits and blockBits
*/
int KC, BC, ROUNDS;
int i, j, t, rconpointer = 0;
word8 tk[4][MAXKC];
switch (keyBits) {
case 128: KC = 4; break;
case 192: KC = 6; break;
case 256: KC = 8; break;
default : return (-1);
}
switch (blockBits) {
case 128: BC = 4; break;
case 192: BC = 6; break;
case 256: BC = 8; break;
default : return (-2);
}
switch (keyBits >= blockBits ? keyBits : blockBits) {
case 128: ROUNDS = 10; break;
case 192: ROUNDS = 12; break;
case 256: ROUNDS = 14; break;
default : return (-3); /* this cannot happen */
}
for(j = 0; j < KC; j++)
for(i = 0; i < 4; i++)
tk[i][j] = k[i][j];
t = 0;
/* copy values into round key array */
for(j = 0; (j < KC) && (t < (ROUNDS+1)*BC); j++, t++)
for(i = 0; i < 4; i++) W[t / BC][i][t % BC] = tk[i][j];
while (t < (ROUNDS+1)*BC) { /* while not enough round key material calculated */
/* calculate new values */
for(i = 0; i < 4; i++)
tk[i][0] ^= S[tk[(i+1)%4][KC-1]];
tk[0][0] ^= rcon[rconpointer++];
if (KC != 8)
for(j = 1; j < KC; j++)
for(i = 0; i < 4; i++) tk[i][j] ^= tk[i][j-1];
else {
for(j = 1; j < KC/2; j++)
for(i = 0; i < 4; i++) tk[i][j] ^= tk[i][j-1];
for(i = 0; i < 4; i++) tk[i][KC/2] ^= S[tk[i][KC/2 - 1]];
for(j = KC/2 + 1; j < KC; j++)
for(i = 0; i < 4; i++) tk[i][j] ^= tk[i][j-1];
}
/* copy values into round key array */
for(j = 0; (j < KC) && (t < (ROUNDS+1)*BC); j++, t++)
for(i = 0; i < 4; i++) W[t / BC][i][t % BC] = tk[i][j];
}
return 0;
}
int rijndaelEncrypt (word8 a[4][MAXBC], int keyBits, int blockBits, word8 rk[MAXROUNDS+1][4][MAXBC])
{
/* Encryption of one block.
*/
int r, BC, ROUNDS;
switch (blockBits) {
case 128: BC = 4; break;
case 192: BC = 6; break;
case 256: BC = 8; break;
default : return (-2);
}
switch (keyBits >= blockBits ? keyBits : blockBits) {
case 128: ROUNDS = 10; break;
case 192: ROUNDS = 12; break;
case 256: ROUNDS = 14; break;
default : return (-3); /* this cannot happen */
}
/* begin with a key addition
*/
KeyAddition(a,rk[0],BC);
/* ROUNDS-1 ordinary rounds
*/
for(r = 1; r < ROUNDS; r++) {
Substitution(a,S,BC);
ShiftRow(a,0,BC);
MixColumn(a,BC);
KeyAddition(a,rk[r],BC);
}
/* Last round is special: there is no MixColumn
*/
Substitution(a,S,BC);
ShiftRow(a,0,BC);
KeyAddition(a,rk[ROUNDS],BC);
return 0;
}
int rijndaelEncryptRound (word8 a[4][MAXBC], int keyBits, int blockBits,
word8 rk[MAXROUNDS+1][4][MAXBC], int rounds)
/* Encrypt only a certain number of rounds.
* Only used in the Intermediate Value Known Answer Test.
*/
{
int r, BC, ROUNDS;
switch (blockBits) {
case 128: BC = 4; break;
case 192: BC = 6; break;
case 256: BC = 8; break;
default : return (-2);
}
switch (keyBits >= blockBits ? keyBits : blockBits) {
case 128: ROUNDS = 10; break;
case 192: ROUNDS = 12; break;
case 256: ROUNDS = 14; break;
default : return (-3); /* this cannot happen */
}
/* make number of rounds sane */
if (rounds > ROUNDS) rounds = ROUNDS;
/* begin with a key addition
*/
KeyAddition(a,rk[0],BC);
/* at most ROUNDS-1 ordinary rounds
*/
for(r = 1; (r <= rounds) && (r < ROUNDS); r++) {
Substitution(a,S,BC);
ShiftRow(a,0,BC);
MixColumn(a,BC);
KeyAddition(a,rk[r],BC);
}
/* if necessary, do the last, special, round:
*/
if (rounds == ROUNDS) {
Substitution(a,S,BC);
ShiftRow(a,0,BC);
KeyAddition(a,rk[ROUNDS],BC);
}
return 0;
}
int rijndaelDecrypt (word8 a[4][MAXBC], int keyBits, int blockBits, word8 rk[MAXROUNDS+1][4][MAXBC])
{
int r, BC, ROUNDS;
switch (blockBits) {
case 128: BC = 4; break;
case 192: BC = 6; break;
case 256: BC = 8; break;
default : return (-2);
}
switch (keyBits >= blockBits ? keyBits : blockBits) {
case 128: ROUNDS = 10; break;
case 192: ROUNDS = 12; break;
case 256: ROUNDS = 14; break;
default : return (-3); /* this cannot happen */
}
/* To decrypt: apply the inverse operations of the encrypt routine,
* in opposite order
*
* (KeyAddition is an involution: it 's equal to its inverse)
* (the inverse of Substitution with table S is Substitution with the inverse table of S)
* (the inverse of Shiftrow is Shiftrow over a suitable distance)
*/
/* First the special round:
* without InvMixColumn
* with extra KeyAddition
*/
KeyAddition(a,rk[ROUNDS],BC);
Substitution(a,Si,BC);
ShiftRow(a,1,BC);
/* ROUNDS-1 ordinary rounds
*/
for(r = ROUNDS-1; r > 0; r--) {
KeyAddition(a,rk[r],BC);
InvMixColumn(a,BC);
Substitution(a,Si,BC);
ShiftRow(a,1,BC);
}
/* End with the extra key addition
*/
KeyAddition(a,rk[0],BC);
return 0;
}
int rijndaelDecryptRound (word8 a[4][MAXBC], int keyBits, int blockBits,
word8 rk[MAXROUNDS+1][4][MAXBC], int rounds)
/* Decrypt only a certain number of rounds.
* Only used in the Intermediate Value Known Answer Test.
* Operations rearranged such that the intermediate values
* of decryption correspond with the intermediate values
* of encryption.
*/
{
int r, BC, ROUNDS;
switch (blockBits) {
case 128: BC = 4; break;
case 192: BC = 6; break;
case 256: BC = 8; break;
default : return (-2);
}
switch (keyBits >= blockBits ? keyBits : blockBits) {
case 128: ROUNDS = 10; break;
case 192: ROUNDS = 12; break;
case 256: ROUNDS = 14; break;
default : return (-3); /* this cannot happen */
}
/* make number of rounds sane */
if (rounds > ROUNDS) rounds = ROUNDS;
/* First the special round:
* without InvMixColumn
* with extra KeyAddition
*/
KeyAddition(a,rk[ROUNDS],BC);
Substitution(a,Si,BC);
ShiftRow(a,1,BC);
/* ROUNDS-1 ordinary rounds
*/
for(r = ROUNDS-1; r > rounds; r--) {
KeyAddition(a,rk[r],BC);
InvMixColumn(a,BC);
Substitution(a,Si,BC);
ShiftRow(a,1,BC);
}
if (rounds == 0) {
/* End with the extra key addition
*/
KeyAddition(a,rk[0],BC);
}
return 0;
}
分享到:
相关推荐
标题中的"AES.rar"指的是一个RAR格式的压缩文件,它包含了一个或多个与AES(Advanced Encryption Standard,高级加密标准)相关的文件。AES是一种广泛应用的块密码算法,用于数据加密,确保信息安全。"AES dll"表明...
本资源"Delphi.rar_AES_AES加密_delphi AES加密_delphi 加解密_java delphi aes"提供的是在Delphi编程环境中实现AES加密和解密的示例代码,其目标是与Java平台上的加解密过程保持兼容。 首先,让我们深入了解一下...
AES,全称Advanced Encryption Standard,即高级加密标准,是一种广泛应用于现代数据保护的对称加密算法。这个"tiny-AES-c-1.0.0"项目是AES算法的一个小型C语言实现,适用于嵌入式系统和其他资源有限的环境。下面...
AES GCM(Advanced Encryption Standard Galois/Counter Mode)是一种基于AES(高级加密标准)的块密码模式,用于提供数据的保密性和完整性。在GCM模式下,AES不仅用于加密,还用于生成消息认证码(MAC),从而实现...
标题中的“基于FPGA的AES256位加密_aes256位加密_AESVerilog_aes-256verilog_aes256_加密FP”暗示了这是一个关于在Field Programmable Gate Array (FPGA)上实现高级加密标准(AES)256位加密算法的项目。AES是一种...
在众多的安全应用中,数据加密是至关重要的,而AES(Advanced Encryption Standard,高级加密标准)作为一种广泛应用的对称加密算法,被集成到STM32F103的硬件加速器中,大大提高了加密和解密的速度。 AES加密是一...
AES,全称Advanced Encryption Standard,是目前广泛应用的一种对称加密标准。它基于Rijndael算法,提供128位的块大小,并支持128、192和256位的密钥长度,以确保高度的安全性。在本文中,我们将探讨如何在C、C++和...
aes.js下载 做项目中需要对前端数据加密传输这个时候需要用到前端加密的算法主要是:Aes.js,Md5.js 一.Vue项目用到的aes.js加密 AES对称加密,比DES安全性高。 AES分为ECB和CBC两种方式。 CBC模式比ECB模式安全。 ...
AES(Advanced Encryption Standard)是一种广泛使用的块加密标准,由NIST(美国国家标准与技术研究所)在2001年发布,取代了之前的DES标准。它以其高效性和安全性在全球范围内被广泛应用,包括网络通信、数据存储等...
**AES-128 CMAC** 是一种基于高级加密标准(AES)的密码消息认证码(CMAC)算法,主要用于数据的完整性和来源的验证。它遵循美国国家标准与技术研究所(NIST)发布的《SP 800-38B:密码模式操作:用于认证的CMAC模式...
标题"AES_height8nh_aesarduino_arduinoAES加密_AES_zip_"提到了几个关键术语,包括AES、Arduino、arduinoAES加密以及zip。这些关键词指向一个关于在Arduino平台上实现AES(高级加密标准)加密技术的主题。 AES...
AES,全称Advanced Encryption Standard,即高级加密标准,是一种广泛应用于现代网络安全的对称加密算法。它是基于块密码,每个加密或解密的数据块大小固定为128位(16字节)。AES的设计目标是提供高效且安全的数据...
公司有用C#写的AES代码 又有用JAVA AES CBC PKCS5Padding 加密的 但对于由JAVA AES CBC PKCS5Padding 加密的数据C++解密的资料极为稀缺 故本人找到了一些资源 同时改写了一些填充方式 使得与JAVA C#兼容 VS2010 测试...
### AES3-2003 数字音频标准详解 #### 标准概述 AES3-2003 是由音频工程学会(Audio Engineering Society, AES)制定的一项数字音频标准,该标准规范了数字音频信号在两个通道上的串行传输格式。AES3-2003 是对...
AES-GCM(Advanced Encryption Standard Galois/Counter Mode)是一种基于AES(高级加密标准)的块密码模式,用于提供数据的保密性和完整性。在网络安全和数据保护领域,它被广泛应用于加密通信、存储加密以及安全...
aes.c aes.h test.c 本人实测可以使用,基于C的AES算法代码,希望能帮到有需要的。以下是相关模式调用的函数。 void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key); void AES_init_ctx_iv(struct AES_ctx...
**AES加密解密** 在信息安全领域,数据加密是保护数据隐私和安全的重要手段。Advanced Encryption Standard(AES,高级加密标准)是一种广泛使用的块密码,它以其高效性和安全性著称。本话题将深入探讨AES加密解密...
AES(Advanced Encryption Standard)是目前广泛应用的对称加密标准,特别是在数据安全、网络通信和存储等领域。AES128指的是使用128位密钥版本的AES算法。在这个项目中,我们将探讨如何使用VERILOG硬件描述语言来...
**AES加解密JS文件详解** 在信息安全领域,数据加密是一种关键的技术,它能保护敏感信息免受未经授权的访问。其中,AES(Advanced Encryption Standard)是广泛应用的一种对称加密算法,因其高效、安全而备受青睐。...