- 浏览: 16489769 次
- 性别:
- 来自: 济南
最新评论
-
wu1236:
ef0793cd94337324b6fefc4c9474af5 ...
Android ApiDemos示例解析(87):Media->MediaPlayer -
77219634:
0127bf2236bee4dd1f632ce430f1af1 ...
本博客文章都为转载,没有任何版权! -
77219634:
0127bf2236bee4dd1f632ce430f1af1 ...
VPLEX - EMC的RAC -
77219634:
0127bf2236bee4dd1f632ce430f1af1 ...
qTip2 Show -
77219634:
0127bf2236bee4dd1f632ce430f1af1 ...
SecureCRT中文乱码、复制粘贴乱码解决办法(修改版)
Creating those files correctly has always been a bit of a challenge, however. It is not that hard to make a /proc file which returns a string. But life gets trickier if the output is long - anything greater than an application is likely to read in a single operation. Handling multiple reads (and seeks) requires careful attention to the reader's position within the virtual file - that position is, likely as not, in the middle of a line of output. The Linux kernel is full of /proc file implementations that get this wrong.
The 2.6 kernel contains a set of functions (implemented by Alexander Viro) which are designed to make it easy for virtual file creators to get it right. This interface (called "seq_file") is not strictly a 2.6 feature - it was also merged into 2.4.15. But 2.6 is where the feature is starting to see serious use, so it is worth describing here.
The seq_file interface is available via <linux/seq_file.h>. There are three aspects to seq_file:
- An iterator interface which lets a virtual file implementation step through the objects it is presenting.
- Some utility functions for formatting objects for output without needing to worry about things like output buffers.
- A set of canned file_operations which implement most operations on the virtual file.
We'll look at the seq_file interface via an extremely simple example: a loadable module which creates a file called /proc/sequence. The file, when read, simply produces a set of increasing integer values, one per line. The sequence will continue until the user loses patience and finds something better to do. The file is seekable, in that one can do something like the following:
dd if=/proc/sequence of=out1 count=1 dd if=/proc/sequence skip=1 out=out2 count=1
Then concatenate the output files out1 and out2 and get the right result. Yes, it is a thoroughly useless module, but the point is to show how the mechanism works without getting lost in other details. (Those wanting to see the full source for this module can find it here).
The iterator interface
Modules implementing a virtual file with seq_file must implement a simple iterator object that allows stepping through the data of interest. Iterators must be able to move to a specific position - like the file they implement - but the interpretation of that position is up to the iterator itself. A seq_file implementation that is formatting firewall rules, for example, could interpret position N as the Nth rule in the chain. Positioning can thus be done in whatever way makes the most sense for the generator of the data, which need not be aware of how a position translates to an offset in the virtual file. The one obvious exception is that a position of zero should indicate the beginning of the file.The /proc/sequence iterator just uses the count of the next number it will output as its position.
Four functions must be implemented to make the iterator work. The first, called start() takes a position as an argument and returns an iterator which will start reading at that position. For our simple sequence example, the start() function looks like:
static void *ct_seq_start(struct seq_file *s, loff_t *pos) { loff_t *spos = kmalloc(sizeof(loff_t), GFP_KERNEL); if (! spos) return NULL; *spos = *pos; return spos; }
The entire data structure for this iterator is a single loff_t value holding the current position. There is no upper bound for the sequence iterator, but that will not be the case for most other seq_file implementations; in most cases the start() function should check for a "past end of file" condition and return NULL if need be.
For more complicated applications, the private field of the seq_file structure can be used. There is also a special value whch can be returned by the start() function called SEQ_START_TOKEN; it can be used if you wish to instruct your show() function (described below) to print a header at the top of the output. SEQ_START_TOKEN should only be used if the offset is zero, however.
The next function to implement is called, amazingly, next(); its job is to move the iterator forward to the next position in the sequence. The example module can simply increment the position by one; more useful modules will do what is needed to step through some data structure. The next() function returns a new iterator, or NULL if the sequence is complete. Here's the example version:
static void *ct_seq_next(struct seq_file *s, void *v, loff_t *pos) { loff_t *spos = (loff_t *) v; *pos = ++(*spos); return spos; }
The stop() function is called when iteration is complete; its job, of course, is to clean up. If dynamic memory is allocated for the iterator, stop() is the place to return it.
static void ct_seq_stop(struct seq_file *s, void *v) { kfree (v); }
Finally, the show() function should format the object currently pointed to by the iterator for output. It should return zero, or an error code if something goes wrong. The example module's show() function is:
static int ct_seq_show(struct seq_file *s, void *v) { loff_t *spos = (loff_t *) v; seq_printf(s, "%Ld\n", *spos); return 0; }
We will look at seq_printf() in a moment. But first, the definition of the seq_file iterator is finished by creating a seq_operations structure with the four functions we have just defined:
static struct seq_operations ct_seq_ops = { .start = ct_seq_start, .next = ct_seq_next, .stop = ct_seq_stop, .show = ct_seq_show };
This structure will be needed to tie our iterator to the /proc file in a little bit.
It's worth noting that the interator value returned by start() and manipulated by the other functions is considered to be completely opaque by the seq_file code. It can thus be anything that is useful in stepping through the data to be output. Counters can be useful, but it could also be a direct pointer into an array or linked list. Anything goes, as long as the programmer is aware that things can happen between calls to the iterator function. However, the seq_file code (by design) will not sleep between the calls to start() and stop(), so holding a lock during that time is a reasonable thing to do. The seq_file code will also avoid taking any other locks while the iterator is active.
Formatted output
The seq_file code manages positioning within the output created by the iterator and getting it into the user's buffer. But, for that to work, that output must be passed to the seq_file code. Some utility functions have been defined which make this task easy.Most code will simply use seq_printf(), which works pretty much like printk(), but which requires the seq_file pointer as an argument. It is common to ignore the return value from seq_printf(), but a function producing complicated output may want to check that value and quit if something non-zero is returned; an error return means that the seq_file buffer has been filled and further output will be discarded.
For straight character output, the following functions may be used:
int seq_putc(struct seq_file *m, char c); int seq_puts(struct seq_file *m, const char *s); int seq_escape(struct seq_file *m, const char *s, const char *esc);
The first two output a single character and a string, just like one would expect. seq_escape() is like seq_puts(), except that any character in s which is in the string esc will be represented in octal form in the output.
There is also a function for printing filenames:
int seq_path(struct seq_file *m, struct vfsmount *mnt, struct dentry *dentry, char *esc);
Here, mnt and dentry indicate the file of interest, and esc is a set of characters which should be escaped in the output. This function is more suited to filesystem code than device drivers, however.
Making it all work
So far, we have a nice set of functions which can produce output within the seq_file system, but we have not yet turned them into a file that a user can see. Creating a file within the kernel requires, of course, the creation of a set of file_operations which implement the operations on that file. The seq_file interface provides a set of canned operations which do most of the work. The virtual file author still must implement the open() method, however, to hook everything up. The open function is often a single line, as in the example module:static int ct_open(struct inode *inode, struct file *file) { return seq_open(file, &ct_seq_ops); };
Here, the call to seq_open() takes the seq_operations structure we created before, and gets set up to iterate through the virtual file.
On a successful open, seq_open() stores the struct seq_file pointer in file->private_data. If you have an application where the same iterator can be used for more than one file, you can store an arbitrary pointer in the private field of the seq_file structure; that value can then be retrieved by the iterator functions.
The other operations of interest - read(), llseek(), and release() - are all implemented by the seq_file code itself. So a virtual file's file_operations structure will look like:
static struct file_operations ct_file_ops = { .owner = THIS_MODULE, .open = ct_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release };
The final step is the creation of the /proc file itself. In the example code, that is done in the initialization code in the usual way:
static int ct_init(void) { struct proc_dir_entry *entry; entry = create_proc_entry("sequence", 0, NULL); if (entry) entry->proc_fops = &ct_file_ops; return 0; } module_init(ct_init);
And that is pretty much it.
The extra-simple version
For extremely simple virtual files, there is an even easier interface. A module can define only the show() function, which should create all the output that the virtual file will contain. The file's open() method then calls:int single_open(struct file *file, int (*show)(struct seq_file *m, void *p), void *data);
When output time comes, the show() function will be called once. The data value given to single_open() can be found in the private field of the seq_file structure. When using single_open(), the programmer should use single_release() instead of seq_release() in the file_operations structure to avoid a memory leak.
(Log in to post comments)
|
|
|
|
相关推荐
- **SPI(Serial Peripheral Interface)接口**:提供了一种高速的全双工同步串行数据传输方式。 - **并行加速器和串行加速器**:这些组件有助于提高数据传输效率。 - **EMI/NFI**:用于处理与显示相关的数据格式...
根据给定文件的内容,以下是对GT1X驱动移植到Android系统的详细知识点梳理。 ### 1. GT1X驱动介绍 GT1X驱动是深圳汇顶科技有限公司(GOODIX)发布的触摸屏控制器驱动,主要用于GT系列触摸屏控制器。...
`mtk_disp_ovl.c`, `mtk_disp_rdma.c`, `mtk_disp_dsi.c` 和 `mtk_disp_wdma.c`等,这些组件处理图像处理任务,如色彩校正、伽马校正、抖动处理、叠加、读取/写入数据以及DSI(Digital Serial Interface)接口操作...
7. **文件"20211102_LINUX_BT_DRIVER"**: 这可能是一个更新版本的驱动程序或者移植工具包,包含了最新的驱动源码、头文件、配置脚本等,用于支持最新的Realtek蓝牙芯片。 在实际应用中,开发者需要根据Realtek的...
Mt6737 all driver porting guide, eg : light, lcm, camera, sensor, keypad...
Porting Kit For Mac_v3.0.18是一款游戏移植工具,让你可以直接在 OS X 上玩 Windows 平台的游戏。Porting Kit 也是利用 Wineskin,先帮你移植好游戏,完成必要文件的配置,而你只需要下载安装即可。
从Windows Mobile向Symbian OS迁移的知识点概览 标题:《从Windows Mobile迁移到Symbian OS》 描述:本文档旨在为熟悉Windows Mobile和Windows平台开发的开发者提供一个全面的指南,帮助他们理解并掌握如何将应用...
linux内核 net phy流程,介绍了net phy流程的driver注册到miibus probe设备。不知道怎么搞的把下载所需积分改小后,系统会自动把积分改回来,如果觉得积分太多就联系我吧
本资料集围绕“LCD_driver_porting.rar”这个压缩包展开,其中包含了一本名为“LCD driver porting_06_02_16.pdf”的内部培训教材,专门针对MTK平台的LCD驱动移植进行了深入讲解。 首先,我们需要理解LCD驱动的基本...
Free RTOS ported on AVR32 and ready to start a project using ATMega32. Unnecessary files have been deleted from FreeRTOS package.
KVM Porting指的是将KVM技术移植到不同的硬件平台或者不同的操作系统环境,以便在这些平台上实现虚拟化功能。 在进行KVM Porting时,需要考虑以下几个关键知识点: 1. **硬件虚拟化支持**:KVM依赖于处理器的硬件...
PortingAudio Codec WM8960 PortingAudio Codec WM8960 PortingAudio Codec WM8960 PortingAudio Codec WM8960 PortingAudio Codec WM8960 PortingAudio Codec WM8960 PortingAudio Codec WM8960 PortingAudio Codec...
### LCD Driver Porting Guide #### 1. 引言 本文档主要介绍如何在SIM8950 Android平台上通过Display Serial Interface (DSI)在内核(Kernel)和Little Kernel (LK)中启动显示面板。这是一份LCD驱动移植手册,内容...
【eCos porting】指的是将eCos(Embedded Configurable Operating System)操作系统移植到特定硬件平台的过程。eCos是一个开放源代码、高度可配置的实时操作系统,适用于嵌入式设备。在进行eCos移植时,主要涉及以下...
在这个上下文中,我们需要将`BOARD_WPA_SUPPLICANT_DRIVER`定义为`WEXT`,即无线扩展(Wireless Extensions)。这指示了wpa_supplicant应使用wireless extension作为其底层驱动程序。 #### 2. 更新Wi-Fi硬件抽象层 ...
本资料包“Porting_from_Linux_sample_code.zip”提供了从Linux到Symbian平台的源码移植示例,旨在帮助开发者理解和实践这一过程。 首先,我们关注移植的核心概念。Linux与Symbian操作系统底层架构和API接口存在...
《db410_sensors_porting_guide_db410c_》是针对DB410C平台的传感器移植指南,其主要目标是帮助开发者将各种传感器驱动程序适配到该平台上,确保硬件与软件的无缝集成。DB410C是一款小巧而功能强大的嵌入式系统,常...
本篇将深入探讨db410c LCD驱动的集成过程,以lm80-p0436-4_dsi_display_porting_guide.pdf文档为依据,解析其中的关键知识点。 1. **DSI(Display Serial Interface)接口**: DSI是Display Serial Interface的...
标题中提及的"msm8909_linux_android_software_porting_manual_software_product_document.pdf" 揭示了本文档是一份关于高通骁龙 MSM8909 平台的Linux Android软件移植操作手册。MSM8909是高通公司的移动处理器平台...