- 浏览: 4406262 次
- 性别:
- 来自: 厦门
文章分类
- 全部博客 (634)
- Oracle日常管理 (142)
- Oracle体系架构 (45)
- Oracle Tuning (52)
- Oracle故障诊断 (35)
- RAC/DG/OGG (64)
- Oracle11g New Features (48)
- DataWarehouse (15)
- SQL, PL/SQL (14)
- DB2日常管理 (9)
- Weblogic (11)
- Shell (19)
- AIX (12)
- Linux/Unix高可用性 (11)
- Linux/Unix日常管理 (66)
- Linux桌面应用 (37)
- Windows (2)
- 生活和工作 (13)
- 私人记事 (0)
- Python (9)
- CBO (15)
- Cognos (2)
- ORACLE 12c New Feature (2)
- PL/SQL (2)
- SQL (1)
- C++ (2)
- Hadoop大数据 (5)
- 机器学习 (3)
- 非技术 (1)
最新评论
-
di1984HIT:
xuexilee!!!
Oracle 11g R2 RAC高可用连接特性 – SCAN详解 -
aneyes123:
谢谢非常有用那
PL/SQL的存储过程和函数(原创) -
jcjcjc:
写的很详细
Oracle中Hint深入理解(原创) -
di1984HIT:
学习了,学习了
Linux NTP配置详解 (Network Time Protocol) -
avalonzst:
大写的赞..
AIX内存概述(原创)
什么时候需要重建索引
索引在普遍意义上能够给数据库带来带来提升,但索引的额外开销也是不容小视的,而索引的重建也是维护索引的重要工作之一。
经过维护的索引可带来以下好处:
1、CBO对于索引的使用可能会产生一个较小的成本值,从而在执行计划中选择使用索引。
2、使用索引扫描的查询扫描的物理索引块会减少,从而提高效率。
3、于需要缓存的索引块减少了,从而让出了内存以供其他组件使用。
重建索引的原因主要包括:
1、
删除的空间没有重用,导致
索引出现碎片
2、
删除大量的表数据后,空间没有重用,导致
索引"虚高"
3、索引的
clustering_facto
和表不一致
也有人认为当索引树高度超过4的时候需要进行重建,但是如果表数量级较大,自然就不会有较高的树,而且重建不会改变索引树高度,除非是由于大量引起的索引树“虚高”,重建才会改善性能,当然这又回到了索引碎片的问题上了。
索引出现碎片
由于索引中只有删除和插入操作,且索引中更新完全不同于表达更新。如果索引中的记录关键字需要更新,就需要将旧记录的位置标记为删除,并在相应的叶子节点插入新的索引纪录。这种删除标记并非真正的删除索引块中的记录,索引块中被标记为删除的记录只有在相同索引条目插入到相同块的相同位置时才能重用。由于即使相同的索引记录也不一定插入到被删除的空间中,故如果对索引频繁进行update和delete操作很容易导致索引出现碎片。较高的PCTFREE也容易出现索引碎片。索引的碎片也就导致了,访问索引数据时需要访问更多的索引块
索引虚高
上面的说的是频繁update和delete导致索引块中有碎片,那如果进行大量的delete操作把整个索引块的数据都删了呢?索引中的索引条目仍然只被标记为删除而没有被真正清空。设想下,如果这时候的索引关键字是一个不断增大的id,那么被标记为删除的索引条目就永远不会被重用,那树就不会不断增长,也就出现了,表的数据空间减少了,而索引的数据空间却在不断增大的情况。由于索引的高度不断增加,访问索引数据时需要访问更多的索引块。
clustering_factor对
B树索引
的影响
对于clustering_factor来说,它是用来比较索引的顺序程度与表的杂乱排序程度的一个度量。Oracle在计算某个clustering_factor时,会对每个索引键值查找对应到表的数据,在查找的过程中,会跟踪从一个表的数据块跳转到另外一个数据块的次数(当然,它不可能真的这么做,源代码里只是简单的扫描索引,从而获得ROWID,然后从这些ROWID获得表的数据块的地址)。每一次跳转时,有个计数器就会增加,最终该计数器的值就是clustering_factor。下图描述了这个原理。
在上图中,我们有一个表,该表有4个数据块,以及20条记录。在列N1上有一个索引,上图中的每个小黑点就表示一个索引条目。列N1的值如图所示。而N1的索引的叶子节点包含的值为:A、B、C、D、E、F。如果oracle开始扫描索引的底部,叶子节点包含的第一个N1值为A,那么根据该值可以知道对应的ROWID位于第一个数据块的第三行里,所以我们的计数器增加1。同时,A值还对应第二个数据块的第四行,由于跳转到了不同的数据块上,所以计数器再加1。同样的,在处理B时,可以知道对应第一个数据块的第二行,由于我们从第二个数据块跳转到了第一个数据块,所以计数器再加1。同时,B值还对应了第一个数据块的第五行,由于我们这里没有发生跳转,所以计数器不用加1。
在上面的图里,在表的每一行的下面都放了一个数字,它用来显示计数器跳转到该行时对应的值。当我们处理完索引的最后一个值时,我们在数据块上一共跳转了十次,所以该索引的clustering_factor为10。
注意第二个数据块,clustering_factor为8出现了4次。因为在索引里N1为E所对应的4个索引条目都指向了同一个数据块。从而使得clustering_factor不再增长。同样的现象出现在第三个数据块中,它包含三条记录,它们的值都是C,对应的clustering_factor都是6。
从clustering_factor的计算方法上可以看出,我们可以知道它的最小值就等于表所含有的数据块的数量;而最大值就是表所含有的记录的总行数。很明显,clustering_factor越小越好,越小说明通过索引查找表里的数据行时需要访问的表的数据块越少。
所以我们可以得出结论,如果仅仅是为了降低索引的clustering_factor而重建索引没有任何意义。降低clustering_factor的关键在于重建表里的数据。事实上,生产环境下,我们甚至没有必要考虑
clustering_factor对索引访问的影响,这个是表数据分布决定的,如果想考虑,就得先创建索引,然后分析
clustering_factor,最后对表进行排序,再重新创建索引,可行性非常低。因此,这里只是作为研究讨论,实际环境下还是要结合具体情况进行分析。针对索引碎片和索引的"虚高",如果查询范围主要是通过unique index访问数据,可以不用理会
索引碎片和索引的"虚高",如果数据范围,主要是通过range scan的方式则需要重建索引,至于原理,相信读了笔者下面的文章后肯定会明白
http://czmmiao.iteye.com/blog/1481227
。关于索引是否需要重建,Oracle有这么一句话
Generally speaking, the need to rebuild b-tree indexes is very rare,
basically because a b-tree index is largely self-managed or
self-balanced.
如何查找出需要重建的索引
我们通过下面实验来具体看下如何查找需要重建的索引
准备实验环境如下
SQL> create table ind (id int,name varchar2(100));
Table created.
SQL> begin
2 for i in 1..10000 loop
3 insert into ind values(i,to_char(i)||'aaa');
4 end loop;
5 commit;
6 end;
7 /
PL/SQL procedure successfully completed.
SQL> create index ind_id_idx on ind(id);
Index created.
SQL> analyze index ind_id_idx validate structure;
Index analyzed.
注意:index_stats只能在同一个session里先执行完analyze index indexname validate structure后才能查到数据,在其他的session里查index_stats是查不到数据的,即使那个初始的session已经执行过analyze index indexname validate structure。顺带提一句,
analyze index indexname validate structure会对整张表加排他锁,阻止表上的所有DML语句。
我们也可以使用online关键字,analyze index indexname validate structure online,这样就可以不对表加锁,但不会填充index_stats视图。
index_stats的主要相关字段如下
--LF_ROWS Number of values currently in the index
--LF_ROWS_LEN Sum in bytes of the length of all values
--DEL_LF_ROWS Number of values deleted from the index
--DEL_LF_ROWS_LEN Length of all deleted values
col name heading 'Index Name' format a30
col del_lf_rows heading 'Deleted|Leaf Rows' format 99999999
col lf_rows_used heading 'Used|Leaf Rows' format 99999999
col ibadness heading '% Deleted|Leaf Rows' format 999.99999
SQL> SELECT name,
2 del_lf_rows,
3 lf_rows - del_lf_rows lf_rows_used,
4 to_char(del_lf_rows / (lf_rows)*100,'999.99999') ibadness
5 FROM index_stats
6 where name = upper('&&index_name');
Deleted Used % Deleted
Index Name Leaf Rows Leaf Rows Leaf Rows
------------------------------ --------- --------- ------------------------------
IND_ID_IDX 0 10000 .00000
可以看到没有删除的索引
更新1000条记录
SQL> update ind set id=id+1 where id> 9000;
1000 rows updated.
SQL> commit;
Commit complete.
SQL> analyze index ind_id_idx validate structure;
Index analyzed.
SQL> col name heading 'Index Name' format a30
col del_lf_rows heading 'Deleted|Leaf Rows' format 99999999
col lf_rows_used heading 'Used|Leaf Rows' format 99999999
col ibadness heading '% Deleted|Leaf Rows' format 999.99999
SELECT name,
del_lf_rows,
lf_rows - del_lf_rows lf_rows_used,
to_char(del_lf_rows / (lf_rows)*100,'999.99999') ibadness
FROM index_stats
where name = upper('&&index_name');SQL> SQL> SQL> SQL> SQL> 2 3 4 5 6
old 6: where name = upper('&&index_name')
new 6: where name = upper('ind_id_idx')
Deleted Used % Deleted
Index Name Leaf Rows Leaf Rows Leaf Rows
------------------------------ --------- --------- ------------------------------
IND_ID_IDX 1000 10000 9.09091
删除的索引占了9.09%,如果删除的索引条目占了10~15%,则可以考虑重建索引或者coalesce
如何重建索引
重建索引有3种方法,具体如下:
1、删除重新建索引可以采用
PARALLEL,
NOLOGGING和
COMPUTE STATISTICS
进行处理,该方法是最慢的,最耗时的。一般不建议。
2、实验alter index .........rebuild命令重建
它使用原索引的叶子节点作为新索引的数据来源。我们知道,原索引的叶子节点的数据块通常都要比表里的数据块要少很多,因此进行的I/O就会减少;同时,由于原索引的叶子节点里的索引条目已经排序了,因此在重建索引的过程中,所做的排序工作也要少的多。从oracle 8.1.6以后,ALTER INDEX … REBUILD命令可以添加ONLINE关键字。这使得在重建索引的过程中,用户可以继续对原来的索引进行修改,也就是说可以继续对表进行DML操作和删除,但在11g之前,在开始和结束创建索引的时刻仍然会锁表。
由于新旧索引在建立时同时存在,因此,使用这种技巧则需要有额外的磁盘空间可临时使用,当索引建完后把老索引删除,如果没有成功,也不会影响原来的索引。利用这种办法,指定了tablespace关键字后
Alter index indexname rebuild tablespace tablespacename
还可以用来将一个索引以到新的表空间。和
重建索引一样,
alter index indexname rebuild
也可以采用
PARALLEL,
NOLOGGING和
COMPUTE STATISTICS
进行处理
,使用
COMPUTE STATISTICS处理的好处在于
可以在重建索引的过程中,就生成CBO所需要的统计信息,这样就避免了索引创建完毕以后再次运行analyze或dbms_stats来收集统计信息。
这个命令的执行步骤如下:
首先,逐一读取现有索引,以获取索引的关键字。
其次,按新的结构填写临时数据段。
最后,一旦操作成功,删除原有索引树,降临时数据段重命名为新的索引。
需要注意的是alter index indexname rebuild 命令中必须使用tablespace字句,以保证重建工作是在现有索引相同的表空间进行。
3、使用alter index indexname coalesce命令或alter index indexname shrik space命令重建索引。该命令主要是
用来合并相邻的碎片,相比于rebuild,
有如下优点
:
1、always online,不需要锁索引
2、不需要消耗接近两倍的临时空间
3、当碎片比率小于25%时比rebuild产生更少的redo日志,当然我们可以在重建索引时将日志关闭。
4、
并不重建索引,只对叶子节点进行整合,不改变索引高度和分支节点数量。当我们重建索引后,索引之间是紧密连接的,高度和分支数量都会改变。如果该索引列上继续进行DML操作,很可能导致树的重新增长、分裂,这是非常消耗资源的操作,同时由于DML操作的继续,达到一定程度后,该索引很可能重新被认为需要rebuild,如此恶性循环。所以往往我们不建议重建索引,不希望重建索引而引起索引高度和分支节点的重构,除非在需要迁移索引到另一个表空间时才选择rebuild。
Insert/update/delete causes the index to evolve over time as the
index splits and grows. When the index is rebuild it will become more
tightly packed; however as DML operations continue on the table the
index splits have to be redone again until the index reaches it's
equilibrium. As a result, the redo activity increases and the index
splits are now more likely to impact performance directly as we consume
more I/O, CPU, etc to serve the index restructuring. After a certain
period of time the index may again experience 'issues' and may be
re-flagged for a rebuild, causing the vicious cycle to continue.
Therefore it is often better to leave the index in its natural
equilibrium and/or at least prevent indexes from being rebuilt on a
regular basis.
5、10g以后引入了
alter index indexname shrik space命令,功能上
和alter index indexname coalesce一样,但经测试产生更多的redo日志(以实际测试环境为准)。
这边给出如下结论,帮助大家整理下
COALESCE、SHRINK和rebuild的区别
:
1、当索引中碎片率<=25%,COALESCE与SHRINK比rebuild的产生的redo日志少,消耗资源更少。两者相比之下SHRINK的成本会更高。
2、当
索引中碎片率>
25%的时,REBUILD的成本更小,产生的redo更少
对测试过程感兴趣的朋友可以参见链接
http://www.shujukuai.com/?p=102
http://www.oracledatabase12g.com/archives/alter-index-coalesce-vs-shrink-space.html
参考至:https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=989093.1
http://space.itpub.net/?uid-9842-action-viewspace-itemid-324587
http://ustcer.blog.51cto.com/1135926/258625
http://www.itpub.net/thread-181890-1-1.html
http://www.shujukuai.com/?p=102
http://www.oracledatabase12g.com/archives/alter-index-coalesce-vs-shrink-space.html
本文原创,转载请注明出处、作者
如有错误,欢迎指正
邮箱:czmcj@163.com
发表评论
-
Oracle 锁与锁争用
2015-05-08 02:13 4180大多数的锁都是行级 ... -
Oracle SQL Parsing
2014-07-30 22:24 1949Stages of SQL Processing Fig ... -
Oracle 11g中的direct path read(原创)
2014-06-16 23:01 5786在11g中,全表扫描可能使用direct path rea ... -
深入解析direct path read
2014-06-16 22:35 2597传统读取数据的 ... -
ORA-01555和延迟块清除
2014-06-16 21:13 206001555, 00000, "snapshot t ... -
Oracle(block clean out)的块清除
2014-06-16 21:09 1286Oracle(block clean out)的块清除Cl ... -
SCN之fast cleanout
2014-06-07 16:13 1751SQL> select dbms_rowid.row ... -
SCN之delayed block cleanout
2014-06-07 16:09 1195Block的cache header部分 ... -
Oracle rman change tracking CTWR(原创)
2014-04-25 11:10 2977block change tracking介绍Block c ... -
SSM自动段空间管理 简介
2014-03-27 19:46 1360因为ASSM的官方文档很少,经过多次的查证之后,终于弄明白了 ... -
undo表空间相关(原创)
2014-03-25 21:48 2110DML语句与undo ... -
Bitmap Index vs B-tree Index(原创)
2014-03-08 21:09 1529Introduction Conventional wi ... -
bitmap索引的深入研究
2014-03-08 14:59 1465位图(bitmap)索引是另外一种索引类型,它的组织形式与 ... -
Oracle 10g/11g Latch机制的变化
2013-01-09 18:57 1547Oracle 10g/11g Latch机制 ... -
ASM内部原理(原创)
2012-12-24 21:55 9944ASM的SGA组成 ASM实例 ... -
ASM的元数据(原创)
2012-12-18 21:16 3068概述 ASM Filesystem是建立在ASM D ... -
Oracle数据块深入分析总结
2012-04-23 12:51 7911最近在研究块的内部结构,把文档简单整理了一下,和大家分享一下。 ... -
Oracle中B-TREE索引的深入理解(原创)
2012-04-09 20:59 15938索引概述 索引与表一样,也属于段(segment)的 ... -
深入理解Oracle中的latch(原创)
2012-04-04 18:17 11168串行化 概述 串行化 - 数据库系统本 ... -
深究Oracle中的锁之锁管理经验总结
2012-03-29 23:37 0锁的申请与释放 锁的申请: 1.使用hash算法将 ...
相关推荐
BAT面试深入理解Mysql索引底层数据结构与算法_1
BAT面试_深入理解Mysql索引底层数据结构与算法_4
重建索引的主要目的是为了重新组织索引数据,特别是对于聚集索引,还包括实际的表数据。当数据在索引页中分布不均匀时,会导致磁盘I/O性能下降,因为获取请求数据可能需要读取更多的页面。通过重建索引,可以消除...
#### 二、理解索引碎片化 索引碎片化是指索引内部结构变得不连续或者不紧凑的状态。这种状态会影响查询效率,具体表现在以下几个方面: - **物理碎片**:指的是数据页之间的不连续性,即数据页分布在磁盘的不同位置...
索引树的维护机制是理解索引重建的重要基础。当表中的数据发生变化时,Oracle会自动维护索引树,确保其反映最新的数据状态。值得注意的是,索引树中并没有更新操作,只有删除和插入操作。例如,在某表的ID列上创建...
用于SqlServer的索引重建,全语句实现,可根据实际情况进行部分关键表的索引重建。
重建索引,整理索引碎片,优化sql执行速度
本资料“深入理解MySQL索引底层”将帮助我们深入探究MySQL索引的工作原理、类型以及优化策略。 一、索引概述 索引是一种数据结构,它为数据库表中的列提供了快速访问路径。通过索引,数据库可以快速定位到特定记录...
根据提供的文件信息,本文将详细解析SQL Server 2000中重建索引与收缩数据库的相关知识点。 ### 一、重建索引 #### 1. 什么是索引 在SQL Server 2000中,索引是提高数据检索速度的重要工具。它可以看作是一种特殊...
重建索引脚本.sql 可以帮助用户
数据库检测修复重建索引
Oracle数据库中的索引是提升查询性能的关键工具,但随着时间推移和数据操作,索引可能会变得效率低下,需要重建以优化其性能。本文主要总结了重建Oracle索引的相关知识点。 一、重建索引的前提条件 当表上的数据...
Elasticsearch-深入理解索引原理 Elasticsearch 中索引(Index)的概念是非常重要的,它是 Elasticsearch 存储数据的基本单元。索引是一个具有类似特性的文档的集合,类比传统的关系型数据库领域来说,索引相当于 ...
### 如何重建索引 #### 一、何时需要考虑重建索引 索引是数据库管理系统为了提高查询效率而建立的数据结构。随着数据的增删改查操作,索引可能会变得不那么高效,甚至可能导致性能下降。因此,在某些情况下,考虑...
本话题将围绕如何针对CLOB类型字段重建索引以及修复用户表空间索引空间的存储过程进行探讨。 首先,重建CLOB类型字段的索引可能是因为索引碎片过多、性能下降或为了更新索引结构以适应新的数据。重建索引通常涉及...
通过深入理解索引结构及其在SQL Server中的应用,我们可以更加高效地管理数据库,提升查询性能。无论是聚集索引还是非聚集索引,都有其适用场景,合理地创建和优化索引能够显著改善系统的响应时间和整体性能。
达梦数据库
重新修复数据库索引, PRINT '重建表' + @TableName +'的索引........Start!'
BAT面试_深入理解Mysql索引底层数据结构与算法_5