- 浏览: 1254024 次
- 性别:
- 来自: 杭州
-
文章分类
- 全部博客 (193)
- ant/maven (6)
- algorithm (5)
- tomcat/weblogic/jboss (6)
- javascript/jquery (13)
- java (33)
- flex/flash (0)
- JPA/Hibernate/myBatis (18)
- java concurrent (7)
- test (2)
- windows/linux (6)
- java collection (7)
- design pattern (2)
- life/health (3)
- database (12)
- IDE (4)
- spring/ejb (20)
- html/css/ckeditor (7)
- jsp/servlet (3)
- java io (13)
- java security (4)
- jni (0)
- svn/git (2)
- english (2)
- java jmx (1)
- xml (1)
- struts/springmvc (9)
- middleware (2)
- cache (1)
- cglib (3)
最新评论
-
jlotusYo:
博主,真感谢。
Java 密码扩展无限制权限策略文件 -
senninha:
这个。。是api说明吧。。
ScheduledExecutorService 源码分析 -
zoutao2008:
请问大文件如何处理?按你这种方式的话,文件超过200M时就会报 ...
hessian系列之二:上传文件 -
lwj1113:
<div class="quote_title ...
myBatis系列之五:与Spring3集成 -
lwj1113:
谢谢博主这么细致的demo;在系列五中通过testng测试类跑 ...
myBatis系列之五:与Spring3集成
LinkedBlockingDeque是LinkedList通过ReentrantLock来实现线程安全以及阻塞,大部分方法都加了锁。
1. 构造方法
2. linkFirst和linkLast方法
3. unlink方法系列
4. BlockingDeque方法
基本流程:
a. 判断参数是否符合要求:不为null等
b. 加锁
c. 执行link或unlink操作,可能需要等待指定的时间或条件符合
d. 在finally块中释放锁
e. 返回布尔值(是否添加或删除成功)或删除的对象
比如:
5. BlockingQueue的方法
单端队列的方法大概只有双端的一半左右:
6. Stack方法
7. Collections方法
8. 迭代器
1. 构造方法
public LinkedBlockingDeque() { this(Integer.MAX_VALUE); } public LinkedBlockingDeque(int capacity) { if (capacity <= 0) throw new IllegalArgumentException(); this.capacity = capacity; } public LinkedBlockingDeque(Collection<? extends E> c) { this(Integer.MAX_VALUE); final ReentrantLock lock = this.lock; lock.lock(); // Never contended, but necessary for visibility try { for (E e : c) { if (e == null) throw new NullPointerException(); if (!linkLast(e)) // 队列已满 throw new IllegalStateException("Deque full"); } } finally { lock.unlock(); // 释放锁 } }
2. linkFirst和linkLast方法
// 将e作为首节点。如果已满,返回null private boolean linkFirst(E e) { // assert lock.isHeldByCurrentThread(); if (count >= capacity) return false; Node<E> f = first; // 当前首节点 Node<E> x = new Node<E>(e, null, f); // 新的首节点 first = x; // first指向新的首节点 if (last == null) last = x; // 只有一个节点,首尾节点相同 else f.prev = x; // 原首节点的前驱是新的首节点 ++count; notEmpty.signal(); return true; } // 将e作为尾节点。如果已满,返回null private boolean linkLast(E e) { // assert lock.isHeldByCurrentThread(); if (count >= capacity) return false; Node<E> l = last; // 当前尾节点 Node<E> x = new Node<E>(e, l, null); // 新的尾节点 last = x; // last指向新的尾节点 if (first == null) first = x; // 只有一个节点,首尾节点相同 else l.next = x; // 原尾节点的后继是新的尾节点 ++count; notEmpty.signal(); // 提醒队列非空 return true; }
3. unlink方法系列
// 删除并返回首节点。如果为空,返回null private E unlinkFirst() { // assert lock.isHeldByCurrentThread(); Node<E> f = first; // 当前首节点 if (f == null) return null; Node<E> n = f.next; // 新的首节点 E item = f.item; // 待返回的对象 f.item = null; f.next = f; // help GC first = n; // first指向新的节点 if (n == null) last = null; else n.prev = null; --count; notFull.signal(); // 提醒队列非满 return item; } // 删除并返回尾节点。如果为空,返回null private E unlinkLast() { // assert lock.isHeldByCurrentThread(); Node<E> l = last; // 当前尾节点 if (l == null) return null; Node<E> p = l.prev; // 新的尾节点 E item = l.item; // 待删除节点指向的对象 l.item = null; l.prev = l; // help GC last = p; // last指向新的尾节点 if (p == null) first = null; else p.next = null; --count; notFull.signal(); // 提醒队列非满 return item; } void unlink(Node<E> x) { // assert lock.isHeldByCurrentThread(); Node<E> p = x.prev; Node<E> n = x.next; if (p == null) { // x是首节点 unlinkFirst(); } else if (n == null) { // x是尾节点 unlinkLast(); } else { // x在中间 p.next = n; n.prev = p; x.item = null; // 节点对象被释放 // Don't mess with x's links. They may still be in use by // an iterator. --count; notFull.signal(); // 提醒队列非满 } }
4. BlockingDeque方法
基本流程:
a. 判断参数是否符合要求:不为null等
b. 加锁
c. 执行link或unlink操作,可能需要等待指定的时间或条件符合
d. 在finally块中释放锁
e. 返回布尔值(是否添加或删除成功)或删除的对象
比如:
public boolean offerFirst(E e) { if (e == null) throw new NullPointerException(); // 判断参数 final ReentrantLock lock = this.lock; lock.lock(); // 加锁 try { return linkFirst(e); // 添加操作 } finally { lock.unlock(); // 释放锁 } } public void putFirst(E e) throws InterruptedException { if (e == null) throw new NullPointerException(); final ReentrantLock lock = this.lock; lock.lock(); try { while (!linkFirst(e)) notFull.await(); // 在notFull条件上等待,直到被唤醒或中断 } finally { lock.unlock(); } } public boolean offerFirst(E e, long timeout, TimeUnit unit) throws InterruptedException { if (e == null) throw new NullPointerException(); long nanos = unit.toNanos(timeout); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); // 可以被中断 try { while (!linkFirst(e)) { if (nanos <= 0) return false; nanos = notFull.awaitNanos(nanos); // 有限时的等待 } return true; } finally { lock.unlock(); } }
5. BlockingQueue的方法
单端队列的方法大概只有双端的一半左右:
public int remainingCapacity() { final ReentrantLock lock = this.lock; lock.lock(); try { return capacity - count; } finally { lock.unlock(); } } public int drainTo(Collection<? super E> c) { return drainTo(c, Integer.MAX_VALUE); } public int drainTo(Collection<? super E> c, int maxElements) { if (c == null) throw new NullPointerException(); if (c == this) // c不可以为当前队列 throw new IllegalArgumentException(); final ReentrantLock lock = this.lock; lock.lock(); try { int n = Math.min(maxElements, count); // 参数maxElements和队列大小的较小值 for (int i = 0; i < n; i++) { c.add(first.item); // In this order, in case add() throws. unlinkFirst(); } return n; } finally { lock.unlock(); } }
6. Stack方法
public void push(E e) { addFirst(e); } public E pop() { return removeFirst(); }
7. Collections方法
public boolean remove(Object o) { return removeFirstOccurrence(o); } public Object[] toArray() { final ReentrantLock lock = this.lock; lock.lock(); try { Object[] a = new Object[count]; int k = 0; for (Node<E> p = first; p != null; p = p.next) a[k++] = p.item; // 队列和数组指向相同的对象 return a; } finally { lock.unlock(); } } public void clear() { final ReentrantLock lock = this.lock; lock.lock(); try { for (Node<E> f = first; f != null; ) { f.item = null; Node<E> n = f.next; f.prev = null; f.next = null; f = n; } first = last = null; count = 0; notFull.signalAll(); } finally { lock.unlock(); } }
8. 迭代器
private abstract class AbstractItr implements Iterator<E> { Node<E> next; // 下个节点 E nextItem; // 下个节点指向的对象 private Node<E> lastRet; // 当前节点,由remove方法调用。 // 指向下个节点,由next()方法调用。 void advance() { final ReentrantLock lock = LinkedBlockingDeque.this.lock; lock.lock(); try { // assert next != null; Node<E> s = nextNode(next); if (s == next) { next = firstNode(); } else { while (s != null && s.item == null) // 跳过被删除的节点 s = nextNode(s); next = s; } nextItem = (next == null) ? null : next.item; } finally { lock.unlock(); } } public boolean hasNext() { return next != null; } public E next() { if (next == null) throw new NoSuchElementException(); lastRet = next; // lastRet指向下个节点,方便remove调用 E x = nextItem; // x指向下个节点的对象,nextItem在advance方法中会被修改 advance(); return x; } public void remove() { Node<E> n = lastRet; if (n == null) throw new IllegalStateException(); lastRet = null; final ReentrantLock lock = LinkedBlockingDeque.this.lock; lock.lock(); try { if (n.item != null) unlink(n); // 删除节点n } finally { lock.unlock(); } } }
发表评论
-
AtomicReferenceFieldUpdater 使用
2014-11-19 22:13 3254AtomicReferenceFieldUpdater位于ja ... -
LockSupport 分析
2014-08-03 21:26 0LockSupport 构造器是私有的,外界主要通过LockS ... -
AtomicInteger 使用
2014-08-02 22:57 3484Java中,i++和++i都不是原子操作,多线程环境下需要 ... -
死锁系列之一:模拟
2014-07-20 18:12 0死锁产生的原因是: 1. 多个线程以不同的顺序来锁共享资源 2 ... -
Java线程死锁检测
2014-07-20 12:55 0public class DeadlockDetector ... -
ExecutorService 分析
2013-03-26 18:37 2396public interface ExecutorServ ... -
Exchanger 源码分析
2013-01-29 12:35 0private Object doExchange ... -
ConcurrentHashMap 源码分析
2013-01-29 10:34 0static final int MAX_SEGM ... -
Executors 源码分析
2012-11-06 16:11 0类图: 1. 在任务的方法里面调用ExecutorServ ... -
ScheduledExecutorService 源码分析
2013-03-27 18:08 3920public interface ScheduledExe ... -
3. 共享对象
2012-05-22 11:38 0本章讲述防止多个线程同时访问某个对象。 -
LockSupport 的使用
2012-04-23 16:36 01. park方法 public static ... -
AbstractQueuedSynchronizer(3)
2012-04-20 09:28 0final boolean transferAft ... -
java concurrent (1) - 传统线程互斥和通信
2012-04-19 13:40 1933线程互斥是一次只有一个线程执行某段代码,保证数据的一致性。线程 ... -
AbstractQueuedSynchronizer(4)
2012-04-13 12:58 2508Condition是一个条件功能的class,必须放在Lock ...
相关推荐
bitset源码Java源码分析 基础集合列表 ArrayList (done) Vector (done) LinkedList (done) Stack (done) ReferenceQueue (done) ArrayDeque (done) Set HashSet (done) TreeSet (done) LinkedHashSet (done) BitSet ...
LinkedBlockingDeque :scroll: 主要介绍LeetCode上面的算法译文,以及面试过程中遇到的实际编码问题总结。 :locked: :file_folder: :laptop: :globe_showing_Asia-Australia: :floppy_disk: :input_latin_...
高并发编程第三阶段11讲 AtomicXXXFieldUpdater源码分析及使用场景分析.mp4 高并发编程第三阶段12讲 sun.misc.Unsafe介绍以及几种Counter方案性能对比.mp4 高并发编程第三阶段13讲 一个JNI程序的编写,通过...
高并发编程第三阶段11讲 AtomicXXXFieldUpdater源码分析及使用场景分析.mp4 高并发编程第三阶段12讲 sun.misc.Unsafe介绍以及几种Counter方案性能对比.mp4 高并发编程第三阶段13讲 一个JNI程序的编写,通过...
计算机术语.pdf
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
内容概要:本文详细介绍了基于PLC(可编程逻辑控制器)和组态软件的智能停车场收费系统的实现方法和技术细节。首先,文章概述了系统的总体架构,指出PLC用于控制停车场的电气设备,而组态软件则提供直观的操作界面。接着,深入解析了PLC梯形图程序的具体逻辑,包括车辆检测、闸门控制、收费计算等功能模块。此外,文章还讨论了接线图的设计原则和注意事项,如防止电磁干扰、确保系统稳定性的措施。最后,介绍了组态画面的设计思路及其优化方法,如动态显示车位状态、实时更新收费信息等。通过这些内容,读者能够全面了解智能停车场收费系统的内部运作机制。 适合人群:从事自动化控制、工业物联网、智能交通等领域的工作技术人员,尤其是对PLC编程和组态软件应用感兴趣的工程师。 使用场景及目标:适用于新建或改造停车场项目的规划与实施阶段,帮助工程师理解和设计类似的自动化控制系统,提高停车场管理效率和服务质量。 其他说明:文中提供了大量实际案例和技术细节,有助于读者更好地掌握相关技术和应对实际工程中的挑战。
内容概要:本文详细介绍了利用MATLAB及其工具箱YALMIP和求解器CPLEX/Gurobi构建电-气-热综合能源系统耦合优化调度模型的方法。首先,文章描述了电网部分采用39节点系统进行直流潮流建模,气网部分则使用比利时20节点配气网,并对Weymouth方程进行了线性化处理,将非线性问题转化为线性规划问题。热网部分引入了热电联产(CHP)和电转气(P2G)设备,实现了热电耦合。通过模块化设计,代码能够灵活地添加新的能量存储或转换设备。实验结果显示,相比单一网络优化,三网耦合优化降低了12.6%的系统总成本,并显著改善了负荷峰谷差。 适合人群:从事能源系统优化研究的专业人士,尤其是熟悉MATLAB编程和优化理论的研究人员和技术人员。 使用场景及目标:适用于希望深入了解综合能源系统耦合优化调度机制的研究人员和技术人员。主要目标是掌握如何使用MATLAB搭建电-气-热耦合优化模型,理解各个子系统的数学建模方法以及它们之间的相互作用。 其他说明:文中提供了详细的代码片段和解释,帮助读者更好地理解和复现模型。此外,还讨论了一些实际应用中的注意事项,如求解器的选择、参数调优等。
计算机三级网络机试考试试题及答案(下).pdf
内容概要:本文详细介绍了使用NX MCD进行机械臂抓取仿真的方法和技术要点。首先探讨了运行时参数的配置,如夹爪力度的动态调整和位置控制的脚本编写。接着讨论了条件仿真序列的设计,包括状态机跳转、阻塞等待、异步响应和超时保护等关键概念。此外,文章还讲解了与PLC的联合仿真,展示了如何通过TIA Portal实现抓取力度的动态补偿以及信号同步。最后分享了一些实用的调试技巧,如使用半速模式观察力学变化、设置碰撞检测触发器等。 适合人群:从事自动化设备开发、机械臂控制系统设计的技术人员,尤其是对NX MCD和PLC有一定了解的工程师。 使用场景及目标:适用于需要进行复杂机械臂抓取仿真的项目,帮助工程师更好地理解和掌握NX MCD与时序仿真的核心技术,提高仿真精度和可靠性。 其他说明:文中提供了大量具体的代码片段和配置示例,便于读者快速上手实践。同时强调了参数化配置的重要性,指出这是为了在现场调试时提供更大的灵活性。
计算机数控系统.pdf
本人创作,禁止商用
内容概要:本文详细介绍了一款大型流水线贴膜机的PLC程序和触摸屏程序,涵盖多个控制工艺如上下气缸控制、输送带电机控制、贴膜伺服控制等。程序适用于西门子S7-1200 PLC和KTP700触摸屏,支持V13及以上版本。文中提供了详细的代码示例和分析,解释了各个控制部分的工作原理及其优化技巧。此外,还介绍了异常处理机制、报警处理模块、以及触摸屏界面上的一些实用功能,如动画流程图显示和参数微调。 适合人群:工业自动化领域的初学者,尤其是对PLC编程和运动控制感兴趣的工程师和技术人员。 使用场景及目标:① 学习PLC编程和触摸屏程序设计的基础知识;② 掌握常见工业控制元件的编程方法和优化技巧;③ 提高对复杂控制系统的设计和调试能力。 其他说明:文章强调了程序中的关键技术和注意事项,如定时器保护、光电开关连锁、位置补偿算法等,有助于初学者避免常见错误并提高系统的可靠性和安全性。
内容概要:本文详细介绍了基于51单片机的多点测温系统的构建方法。系统采用五个DS18B20数字温度传感器进行温度采集,并将数据实时显示在LCD1602屏幕上。文中涵盖了硬件连接、单总线通信协议、温度读取与显示的具体实现细节,以及常见问题的解决方案。特别强调了ROM匹配算法的应用,确保多个传感器在同一总线上能够正确通信。此外,还提供了Proteus仿真的注意事项和一些调试技巧。 适合人群:对嵌入式系统开发感兴趣的初学者和有一定单片机基础的研发人员。 使用场景及目标:适用于恒温箱监控、多房间温控等应用场景,旨在帮助开发者掌握多点温度监测系统的搭建方法和技术要点。 其他说明:文中附有完整的硬件连接图和核心代码片段,便于读者理解和实践。同时提到了一些扩展功能,如温度单位切换、阈值报警等,增加了项目的趣味性和实用性。
内容概要:本文详细介绍了将模糊控制与传统PID相结合应用于直流电机控制的方法。首先阐述了传统PID控制在面对负载突变或转速大幅变化时的局限性,随后引入模糊PID的概念并展示了具体的实现步骤。文中提供了完整的Python和C语言代码示例,涵盖模糊规则表的设计、隶属度函数的选择以及参数自适应调整机制。此外,作者还分享了多个实用的经验技巧,如参数调整范围限制、误差量化因子选择、抗积分饱和算法的应用等。并通过实验数据对比证明了模糊PID相比传统PID在响应速度和稳定性方面的优势。 适合人群:具有一定自动化控制理论基础和技术实践经验的研发人员,尤其是从事电机控制系统开发的技术人员。 使用场景及目标:适用于需要提高直流电机控制系统鲁棒性和响应速度的实际工程项目。主要目标是在保持系统稳定的前提下,缩短调节时间和减少超调量,从而提升整体性能。 其他说明:尽管模糊PID能够显著改善某些特定条件下的控制效果,但仍需注意合理设置初始参数和调整幅度限制。同时,对于不同类型的电机和应用场景,可能还需要进一步优化模糊规则和隶属度函数。
计算机试题office应用.pdf
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
内容概要:本文详细介绍了用于冷热电联供系统(CCHP)的多目标粒子群优化(MOPSO)算法MATLAB实现。该代码通过动态惯性权重、轮盘赌全局最优选取和约束集成等特性,解决了燃气轮机出力与风光发电波动的平衡问题,优化了电制冷机和锅炉的启停策略,从而提高系统的经济性和环保性能。文中展示了核心代码片段,如粒子位置更新、适应度函数构建、约束处理策略以及帕累托前沿筛选等,强调了工程化思维的应用,如设备启停控制、风光预测处理等。 适合人群:从事能源系统优化的研究人员、工程师和技术爱好者,尤其是对MATLAB编程和多目标优化算法有一定了解的人士。 使用场景及目标:适用于需要优化冷热电联供系统运行策略的场合,旨在实现系统运行成本最小化和碳排放量最低的目标。具体应用场景包括但不限于:工业园区能源管理、分布式能源系统调度、智能电网优化等。 其他说明:该代码不仅提供了理论上的优化方案,还通过实际案例验证了其有效性,如在夏季负荷高峰场景下的动态调度策略。此外,代码具有良好的扩展性和实用性,支持多种设备模型和目标函数的定制化修改。
计算机求职笔试内容与分类
内容概要:本文详细介绍了欧洲进口料箱分拣系统的程序架构及其核心技术。系统采用西门子S7-1500 PLC作为控制器,通过Socket接口实现WCS(仓储控制系统)与PLC之间的高效通信。文中展示了PLC端的Socket服务端代码,以及分拣逻辑的具体实现,包括动态权重算法优化分拣路径、异常处理机制、变频器控制和报警处理模块的设计。此外,文章还探讨了硬件配置如扫码枪、直流辊筒电机和变频器的作用,以及程序中的模块化设计和工业级代码规范。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是对PLC编程、WCS集成和工业物联网感兴趣的读者。 使用场景及目标:适用于需要深入了解料箱输送线控制系统的工作原理、优化分拣效率、提高系统可靠性和稳定性的应用场景。目标是帮助读者掌握WCS与PLC的Socket通信设计、分拣逻辑优化及硬件配置的最佳实践。 其他说明:文章不仅提供了详细的代码示例,还分享了许多实际调试经验和设计思路,有助于读者更好地理解和应用相关技术。