`
love~ruby+rails
  • 浏览: 852505 次
  • 性别: Icon_minigender_1
  • 来自: lanzhou
社区版块
存档分类
最新评论

Installing the software on Ubuntu 9.10

阅读更多

Ubuntu 9.10, nicknamed Karmic Koala, is about to be released, and in a moment of idleness, I upgraded my old 9.04 install to the latest beta.  Upgrading is always generates a slight feeling of dread,  taking the plunge from the cozy stability of bugs I’ve learned to work around, into the great unknown, but it all went even smoother than the previous one.  And on the plus side, ghc is now, finally, upgraded to an almost modern release, (6.10.4) and lots of libraries are included as well.  Great work by Joachim Breitner and his army of debianizers.  So I’m all ready to take advantage of my new compiler and its improvements, but first I need to bring all my software up to speed.  I’ll make notes here as I go along, and hopefully this will be useful also for users of other Linux distributions.

 

Installing biolib

First I need to install the bioinformatics library.  I’m about to release 0.4.1, but this is also a good opportunity to check that everything works with 0.4 (which is what you’ll find on Hackage), so let’s do that first.  Using darcs, I pull the repo up to the 0.4 tag (but you can of course get the tarball from Hackage):

% ./Setup.hs configure
Configuring bio-0.4...
Setup.hs: At least the following dependencies are missing:
QuickCheck <2, binary -any

(Side note: you may notice that I run Setup.hs directly, as opposed to using runhaskell. I prefer it this way, but you may have to do a chmod +x Setup.hs if you downloaded this from the darcs repository or similar.)

Since we want to use the system libraries as far as possible, these libraries are just an apt-get away:

sudo apt-get install libghc6-quickcheck1\*
sudo apt-get install libghc6-binary-\*

Now, let’s try again:

% ./Setup.hs configure
Configuring bio-0.4...
% ./Setup.hs build
Preprocessing library bio-0.4...
Building bio-0.4...
Binary: Int64 truncated to fit in 32 bit Int
ghc: panic! (the 'impossible' happened)
(GHC version 6.10.4 for i386-unknown-linux):
Prelude.chr: bad argument

Please report this as a GHC bug:  http://www.haskell.org/ghc/reportabug

Okay, this was not what was supposed to happen.  As always, dropping to #haskell on IRC is the first thing to do, and sure enough:

<sereven> ketil: that's also shown up for xmonad users when .hi and .o files weren't cleaned
between rebuilds mixing different versions. usually between ghc updates IIRC.

Let’s try to get rid of old cruft lying about, polluting directories:

./Setup.hs clean && ./Setup.hs configure && ./Setup.hs build

Sure enough, this time it worked. For good measure, we’ll run the unit tests:

make test

After a zillion tests, we notice that everything is go, great!

Applications

Next, it is time to go through the list of bioinformatics applications.  Since my working directory is a mess of branches and versions, we’ll just go over the published applications and versions on Hackage.

xsact is an application to do sequence (in particular EST sequence) clustering.  It predates and thues doesn’t actually use the bioinformatics library, but we’ll check it anway.  So we try the familiar command line:

./Setup.hs clean && ./Setup.hs configure && ./Setup.hs build

And things compile.  However, the version on Hackage is outdated, so we’ll upload a new version, 1.7.1.  One test case still fails, but I can’t imagine anybody is using it to generate Newick-formatted trees — I am certainly not — and since there are many equally correct outputs (including tree rotations and rounding modes), output is likely correct anyway.  Holler if you need it!

rbr is an application to mask repeats in sequence data.  Normally, this is done using a library of known repeats, but this application tries to do it using statistics, making the — I think justifiable — assumption that repeats are going to be more common than non-repeats. The version on Hackage is old, and only works with the library prior to 0.4, so again this is a good time to push the latest changes out in the limelight.  Compiling this works great, by the way.

cluster_tools is a package that contains a bunch of binaries, useful for working with the results of sequence clustering, including extracting various information from ACE files.  This uses another library, called simpleargs, that simplifies command line argument parsing for simple cases.  Again, the Hackage version is for bio<0.4, so a new version will be pushed.  At the same time, we make a mental note to push version 0.2 of simpleargs to Hackage as well, instead of keeping age-old modifications buried forever.

dephd is my Swiss-army-knife of sequence analysis, and lets you do various things like converting between formats, plotting and trimming by quality.  This is a more live project than most of the others (I’m currently working on improved quality trimming and automatic generation of files for submission to GenBank), but the currently available version also compiles without incident.

estreps is a couple of programs I needed for repeat analysis, perhaps not tremendously interesting, but at least rselect, which lets you select randomized subsets from Fasta files, might be of interest to some? We try the usual invocation to compile, and get:

src/Unigene.hs:24:23:
Couldn't match expected type `a' against inferred type `Unknown'
`a' is a rigid type variable bound by
the type signature for `clusters' at src/Unigene.hs:22:41

This error arises due to the introduction of phantom types for identifying sequences introduced in bio 0.4. Unfortunately, this version of estreps contains some adaption to this model, so it won’t compile against older versions either. So it looks like yet another sdist for Hackage. Look for version 0.3.1.

flower is a utility for extracting information from SFF files (containing sequences from Roche’s 454 machines).  Although a new version is around the corner, the old 0.2 just works.

xml2x is a utility for converting BLAST results in XML format into CSVs, that somehow is more compatible with biologists.  Trying to compile it fails, with the following error:

src/Xml2X.hs:152:49:
Couldn't match expected type `[b]'
against inferred type `Maybe Bio.Sequence.KEGG.KO'
In the first argument of `concatMap', namely `(flip M.lookup ks)'
In the first argument of `($)', namely
`concatMap (flip M.lookup ks)'
In the second argument of `($)', namely
`concatMap (flip M.lookup ks) $ map chop $ map subject fs'

It turns out that somewhere along the way, the lookup function from Data.Map was de-generalized from working on arbitrary monads to just returning a Maybe. I was using this to return a list, using the empty list to signal an unsuccessful lookup. This is easily remedied, but that means yet another sdist for Hackage.

korfu is a utility for identifying open reading frames in sequence data.  It hasn’t yet been ported to version 0.4 of the library, but works if you install 0.3.5.  I updated this too, since it didn’t have a category.  Now it too resides in the bioinformatics section.

Summing up

In retrospect, it seems like giving old code a thorough spring cleaning once in a while. Although nothing really critical or difficult happened, a good number of small annoyances were discovered, and a bunch of new sdists are now ready to be uploaded to Hackage. Next will be converting all this into debian packages.

The important question is of course, how do we avoid this in the future? During development, it is important to be able to modify libraries and appliations, but installing a new version of the biolib, say, overwrites the old one, and suddenly I’m compiling and testing everything against a different library than Joe Random Hackage User is going to find. I have some thoughts on how to avoid this, but if you have a method that works nicely, I’m all ears.

分享到:
评论

相关推荐

    深圳混泥土搅拌站生产过程中环境管理制度.docx

    深圳混泥土搅拌站生产过程中环境管理制度

    应用商城1.4+软件库安卓源码2.4+配置教程集.zip

    一款由软件库、线报分享、程序工具箱三合一聚合程序源码。软件(文章)支持免费、密码、会员、付费、卡密、广告多种限制类型,不仅适合引流还适合进行流量变现。应用商城源码版和母体安装包都放在一个链接里面了 母体安装包配置教程:https://www.bilibili.com/video/BV1AyWQeMEkv/?share_source=copy_web&vd_source=a6794bb3f38ff7c5411cceabe322637a 应用商城源码配置教程:https://www.bilibili.com/video/BV1Ry411i7Qr/?share_source=copy_web&vd_source=a6794bb3f38ff7c5411cceabe322637a 软件库源码配置教程:https://www.bilibili.com/video/BV1vs421T71P/?share_source=copy_web&vd_source=a6794bb3f38ff7c5411cceabe322637a

    CDH 7.16组件原理及操作大全.zip

    大数据组件原理及其操作大全

    深圳混泥土搅拌站部门及岗位职责.docx

    深圳混泥土搅拌站部门及岗位职责

    基于java的中华美食网源代码(完整前后端+mysql+说明文档+LW).zip

    前台模块: 首页:网站的主页,通常包含导航和重要信息的概览。 注册:允许新用户创建账户。 登录:已注册用户可以登录系统。 美食:展示各种美食信息和食谱。 个人信息:用户可以查看和编辑自己的个人信息。 我的查询:用户可以查看自己的查询历史或收藏的美食。 留言板:用户可以在此板块留言,提出问题或反馈意见。 管理后台模块: 登录:管理员登录后台系统的入口。 修改密码:管理员可以更改自己的登录密码。 系统管理:管理系统的设置和维护。 类别管理:管理美食的分类信息。 美食管理:管理美食的详细信息,如食谱、食材等。 菜谱录入:管理员可以添加新的菜谱到系统中。 公告管理:发布和管理系统公告。 留言管理:管理员可以查看和回复用户的留言。 用户管理:管理系统用户的信息和权限。 环境说明: 开发语言:Java,jsp JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea 部署容器:tomcat

    信息论与编码课程实验指导书.doc

    信息论与编码课程实验指导书.doc

    【9506】基于springboot+vue的小区疫情购物系统录.zip

    技术选型 【后端】:Java 【框架】:springboot 【前端】:vue 【JDK版本】:JDK1.8 【服务器】:tomcat7+ 【数据库】:mysql 5.7+ 项目包含前后台完整源码。 项目都经过严格调试,确保可以运行! 具体项目介绍可查看博主文章或私聊获取 助力学习实践,提升编程技能,快来获取这份宝贵的资源吧! 在当今快速发展的信息技术领域,技术选型是决定一个项目成功与否的重要因素之一。基于以下的技术栈,我们为您带来了一份完善且经过实践验证的项目资源,让您在学习和提升编程技能的道路上事半功倍。以下是该项目的技术选型和其组件的详细介绍。 在后端技术方面,我们选择了Java作为编程语言。Java以其稳健性、跨平台性和丰富的库支持,在企业级应用中处于领导地位。项目采用了流行的Spring Boot框架,这个框架以简化Java企业级开发而闻名。Spring Boot提供了简洁的配置方式、内置的嵌入式服务器支持以及强大的生态系统,使开发者能够更高效地构建和部署应用。 前端技术方面,我们使用了Vue.js,这是一个用于构建用户界面的渐进式JavaScript框架。Vue以其易上手、灵活和性能出色而受到开发者的青睐,它的组件化开发思想也有助于提高代码的复用性和可维护性。 项目的编译和运行环境选择了JDK 1.8。尽管Java已经推出了更新的版本,但JDK 1.8依旧是一种成熟且稳定的选择,广泛应用于各类项目中,确保了兼容性和稳定性。 在服务器方面,本项目部署在Tomcat 7+之上。Tomcat是Apache软件基金会下的一个开源Servlet容器,也是应用最为广泛的Java Web服务器之一。其稳定性和可靠的性能表现为Java Web应用提供了坚实的支持。 数据库方面,我们采用了MySQL 5.7+。MySQL是一种高效、可靠且使用广泛的关系型数据库管理系统,5.7版本在性能和功能上都有显著的提升。 值得一提的是,该项目包含了前后台的完整源码,并经过严格调试,确保可以顺利运行。通过项目的学习和实践,您将能更好地掌握从后端到前端的完整开发流程,提升自己的编程技能。欢迎参考博主的详细文章或私信获取更多信息,利用这一宝贵资源来推进您的技术成长之路!

    语音增强技术在低信噪比环境下的双门限语音端点检测算法

    内容概要:本文介绍了一种在低信噪比条件下提高语音端点检测准确率的算法,通过结合语音增强技术和传统的双门限检测方法,有效提高了低信噪比环境下的语音端点检测性能。文章详细介绍了算法的原理和实现步骤,并通过Matlab仿真验证了该算法的有效性。 适合人群:从事语音信号处理研究的技术人员、高校教师和研究人员。 使用场景及目标:适用于语音识别、语音通讯等需要在复杂噪声环境下进行语音信号处理的场合。目标是提高低信噪比环境下的语音端点检测准确率。 其他说明:该算法在高信噪比情况下直接使用双门限检测,而在低信噪比环境下先进行语音增强再进行端点检测,显著提高了检测准确率。

    【故障诊断】基于matlab白冠鸡算法优化长短记忆网络COOT-LSTM故障诊断分类【Matlab仿真 6064期】.zip

    CSDN Matlab研究室上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

    【KELM回归预测】基于matlab蜂虎狩猎算法优化核极限学习BEH-KELM回归预测【Matlab仿真 3845期】.zip

    【KELM回归预测】基于matlab蜂虎狩猎算法优化核极限学习BEH-KELM回归预测【Matlab仿真 3845期】

    BLE蓝牙单片机CC2540、CC2541裸机简易C语言程序开发之温度传感器DS18B20.zip

    1、嵌入式物联网单片机项目开发例程,简单、方便、好用,节省开发时间。 2、代码使用IAR软件开发,当前在CC2540/CC2541上运行,如果是其他型号芯片,请自行调整。 3、软件下载时,请注意接上硬件,并确认烧录器连接正常。 4、有偿指导v:wulianjishu666; 5、如果接入其他传感器,请查看账号发布的其他资料。 6、单片机与模块的接线,在代码当中均有定义,请自行对照。 7、若硬件有差异,请根据自身情况调整代码,程序仅供参考学习。 8、代码有注释说明,请耐心阅读。

    【光伏功率预测】基于matlab粒子群算法优化高斯过程回归PSO-GPR光伏功率预测(多输入单输出)【Matlab仿真 4373期】.zip

    【光伏功率预测】基于matlab粒子群算法优化高斯过程回归PSO-GPR光伏功率预测(多输入单输出)【Matlab仿真 4373期】

    202412181903.pdf

    202412181903.pdf

    【故障诊断】基于matlab白冠鸡算法优化双向时间卷积神经网络COOT-BiTCN轴承数据故障诊断【Matlab仿真 5057期】.zip

    CSDN Matlab研究室上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

    C语言航空订票系统程序.doc

    C语言航空订票系统程序.doc

    【BP回归预测】基于matlab秃鹰算法优化BP神经网络BES-BP光伏数据预测(多输入单输出)【Matlab仿真 5185期】.zip

    CSDN Matlab研究室上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

    【SVM回归预测】基于matlab人工兔算法优化卷积神经网络结合支持向量机ARO-CNN-SVM数据回归预测【Matlab仿真 3830期】.zip

    【SVM回归预测】基于matlab人工兔算法优化卷积神经网络结合支持向量机ARO-CNN-SVM数据回归预测【Matlab仿真 3830期】

    【SVM回归预测】基于matlab鹈鹕算法优化卷积神经网络结合支持向量机POA-CNN-SVM数据回归预测【Matlab仿真 3776期】.zip

    【SVM回归预测】基于matlab鹈鹕算法优化卷积神经网络结合支持向量机POA-CNN-SVM数据回归预测【Matlab仿真 3776期】

    【风电功率预测】基于matlab豪猪算法优化BP神经网络CPO-BP风电功率预测【Matlab仿真 4317期】.zip

    【风电功率预测】基于matlab豪猪算法优化BP神经网络CPO-BP风电功率预测【Matlab仿真 4317期】

    【BP回归预测】基于matlab蝗虫算法优化BP神经网络GOA-BP光伏数据预测(多输入单输出)【Matlab仿真 5161期】.zip

    CSDN Matlab研究室上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

Global site tag (gtag.js) - Google Analytics