- 浏览: 111874 次
- 性别:
- 来自: 深圳
文章分类
最新评论
-
土豆蛋儿:
我想读取一个外部文件,以什么方式好了? 文件内容经常编辑
flume 自定义source -
土豆蛋儿:
大神,您好。
flume 自定义source
前面已经讲过如何将log4j的日志输出到指定的hdfs目录,我们前面的指定目录为/flume/events。
如果想用hive来分析采集来的日志,我们可以将/flume/events下面的日志数据都load到hive中的表当中去。
如果了解hive的load data原理的话,还有一种更简便的方式,可以省去load data这一步,就是直接将sink1.hdfs.path指定为hive表的目录。
下面我将详细描述具体的操作步骤。
我们还是从需求驱动来讲解,前面我们采集的数据,都是接口的访问日志数据,数据格式是JSON格式如下:
{"requestTime":1405651379758,"requestParams":{"timestamp":1405651377211,"phone":"02038824941","cardName":"测试商家名称","provinceCode":"440000","cityCode":"440106"},"requestUrl":"/reporter-api/reporter/reporter12/init.do"}
现在有一个需求,我们要统计接口的总调用量。
我第一想法就是,hive中建一张表:test 然后将hdfs.path指定为tier1.sinks.sink1.hdfs.path=hdfs://master68:8020/user/hive/warehouse/besttone.db/test
然后select count(*) from test; 完事。
这个方案简单,粗暴,先这么干着。于是会遇到一个问题,我的日志数据时JSON格式的,需要hive来序列化和反序列化JSON格式的数据到test表的具体字段当中去。
这有点糟糕,因为hive本身没有提供JSON的SERDE,但是有提供函数来解析JSON字符串,
第一个是(UDF):
get_json_object(string json_string,string path) 从给定路径上的JSON字符串中抽取出JSON对象,并返回这个对象的JSON字符串形式,如果输入的JSON字符串是非法的,则返回NULL。
第二个是表生成函数(UDTF):json_tuple(string jsonstr,p1,p2,...,pn) 本函数可以接受多个标签名称,对输入的JSON字符串进行处理,这个和get_json_object这个UDF类似,不过更高效,其通过一次调用就可以获得多个键值,例:select b.* from test_json a lateral view json_tuple(a.id,'id','name') b as f1,f2;通过lateral view行转列。
最理想的方式就是能有一种JSON SERDE,只要我们LOAD完数据,就直接可以select * from test,而不是select get_json_object这种方式来获取,N个字段就要解析N次,效率太低了。
好在cloudrea wiki里提供了一个json serde类(这个类没有在发行的hive的jar包中),于是我把它搬来了,如下:
我稍微修改了一点东西,多加了一个参数input.invalid.ignore,对应的变量为:
//遇到非JSON格式输入的时候的处理。
private boolean ignoreInvalidInput;
在deserialize方法中原来是如果传入的是非JSON格式字符串的话,直接抛出了SerDeException,我加了一个参数来控制它是否抛出异常,在initialize方法中初始化这个变量(默认为false):
// 遇到无法转换成JSON对象的字符串时,是否忽略,默认不忽略,抛出异常,设置为true将跳过异常。
ignoreInvalidInput = Boolean.valueOf(tbl.getProperty(
"input.invalid.ignore", "false"));
好的,现在将这个类打成JAR包: JSONSerDe.jar,放在hive_home的auxlib目录下(我的是/etc/hive/auxlib),然后修改hive-env.sh,添加HIVE_AUX_JARS_PATH=/etc/hive/auxlib/JSONSerDe.jar,这样每次运行hive客户端的时候都会将这个jar包添加到classpath,否则在设置SERDE的时候会报找不到类。
现在我们在HIVE中创建一张表用来存放日志数据:
这个表结构就是按照日志格式设计的,还记得前面说过的日志数据如下:
{"requestTime":1405651379758,"requestParams":{"timestamp":1405651377211,"phone":"02038824941","cardName":"测试商家名称","provinceCode":"440000","cityCode":"440106"},"requestUrl":"/reporter-api/reporter/reporter12/init.do"}
我使用了一个STRUCT类型来保存requestParams的值,row format我们用的是自定义的json serde:com.besttone.hive.serde.JSONSerDe,SERDEPROPERTIES中,除了设置JSON对象的映射关系外,我还设置了一个自定义的参数:"input.invalid.ignore"="true",忽略掉所有非JSON格式的输入行。这里不是真正意义的忽略,只是非法行的每个输出字段都为NULL了,要在结果集上忽略,必须这样写:select * from test where requestUrl is not null;
OK表建好了,现在就差数据了,我们启动flumedemo的WriteLog,往hive表test目录下面输出一些日志数据,然后在进入hive客户端,select * from test;所以字段都正确的解析,大功告成。
flume.conf如下:
besttone.db是我在hive中创建的数据库,了解hive的应该理解没多大问题。
OK,到这篇文章为止,整个从LOG4J生产日志,到flume收集日志,再到用hive离线分析日志,一整套流水线都讲解完了。
原文:http://blog.csdn.net/xiao_jun_0820/article/details/38119123
如果想用hive来分析采集来的日志,我们可以将/flume/events下面的日志数据都load到hive中的表当中去。
如果了解hive的load data原理的话,还有一种更简便的方式,可以省去load data这一步,就是直接将sink1.hdfs.path指定为hive表的目录。
下面我将详细描述具体的操作步骤。
我们还是从需求驱动来讲解,前面我们采集的数据,都是接口的访问日志数据,数据格式是JSON格式如下:
{"requestTime":1405651379758,"requestParams":{"timestamp":1405651377211,"phone":"02038824941","cardName":"测试商家名称","provinceCode":"440000","cityCode":"440106"},"requestUrl":"/reporter-api/reporter/reporter12/init.do"}
现在有一个需求,我们要统计接口的总调用量。
我第一想法就是,hive中建一张表:test 然后将hdfs.path指定为tier1.sinks.sink1.hdfs.path=hdfs://master68:8020/user/hive/warehouse/besttone.db/test
然后select count(*) from test; 完事。
这个方案简单,粗暴,先这么干着。于是会遇到一个问题,我的日志数据时JSON格式的,需要hive来序列化和反序列化JSON格式的数据到test表的具体字段当中去。
这有点糟糕,因为hive本身没有提供JSON的SERDE,但是有提供函数来解析JSON字符串,
第一个是(UDF):
get_json_object(string json_string,string path) 从给定路径上的JSON字符串中抽取出JSON对象,并返回这个对象的JSON字符串形式,如果输入的JSON字符串是非法的,则返回NULL。
第二个是表生成函数(UDTF):json_tuple(string jsonstr,p1,p2,...,pn) 本函数可以接受多个标签名称,对输入的JSON字符串进行处理,这个和get_json_object这个UDF类似,不过更高效,其通过一次调用就可以获得多个键值,例:select b.* from test_json a lateral view json_tuple(a.id,'id','name') b as f1,f2;通过lateral view行转列。
最理想的方式就是能有一种JSON SERDE,只要我们LOAD完数据,就直接可以select * from test,而不是select get_json_object这种方式来获取,N个字段就要解析N次,效率太低了。
好在cloudrea wiki里提供了一个json serde类(这个类没有在发行的hive的jar包中),于是我把它搬来了,如下:
package com.besttone.hive.serde; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Properties; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hive.serde.serdeConstants; import org.apache.hadoop.hive.serde2.SerDe; import org.apache.hadoop.hive.serde2.SerDeException; import org.apache.hadoop.hive.serde2.SerDeStats; import org.apache.hadoop.hive.serde2.objectinspector.ListObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.MapObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.StructField; import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector; import org.apache.hadoop.hive.serde2.typeinfo.ListTypeInfo; import org.apache.hadoop.hive.serde2.typeinfo.MapTypeInfo; import org.apache.hadoop.hive.serde2.typeinfo.StructTypeInfo; import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo; import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoFactory; import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoUtils; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.Writable; import org.codehaus.jackson.map.ObjectMapper; /** * This SerDe can be used for processing JSON data in Hive. It supports * arbitrary JSON data, and can handle all Hive types except for UNION. However, * the JSON data is expected to be a series of discrete records, rather than a * JSON array of objects. * * The Hive table is expected to contain columns with names corresponding to * fields in the JSON data, but it is not necessary for every JSON field to have * a corresponding Hive column. Those JSON fields will be ignored during * queries. * * Example: * * { "a": 1, "b": [ "str1", "str2" ], "c": { "field1": "val1" } } * * Could correspond to a table: * * CREATE TABLE foo (a INT, b ARRAY<STRING>, c STRUCT<field1:STRING>); * * JSON objects can also interpreted as a Hive MAP type, so long as the keys and * values in the JSON object are all of the appropriate types. For example, in * the JSON above, another valid table declaraction would be: * * CREATE TABLE foo (a INT, b ARRAY<STRING>, c MAP<STRING,STRING>); * * Only STRING keys are supported for Hive MAPs. */ public class JSONSerDe implements SerDe { private StructTypeInfo rowTypeInfo; private ObjectInspector rowOI; private List<String> colNames; private List<Object> row = new ArrayList<Object>(); //遇到非JSON格式输入的时候的处理。 private boolean ignoreInvalidInput; /** * An initialization function used to gather information about the table. * Typically, a SerDe implementation will be interested in the list of * column names and their types. That information will be used to help * perform actual serialization and deserialization of data. */ @Override public void initialize(Configuration conf, Properties tbl) throws SerDeException { // 遇到无法转换成JSON对象的字符串时,是否忽略,默认不忽略,抛出异常,设置为true将跳过异常。 ignoreInvalidInput = Boolean.valueOf(tbl.getProperty( "input.invalid.ignore", "false")); // Get a list of the table's column names. String colNamesStr = tbl.getProperty(serdeConstants.LIST_COLUMNS); colNames = Arrays.asList(colNamesStr.split(",")); // Get a list of TypeInfos for the columns. This list lines up with // the list of column names. String colTypesStr = tbl.getProperty(serdeConstants.LIST_COLUMN_TYPES); List<TypeInfo> colTypes = TypeInfoUtils .getTypeInfosFromTypeString(colTypesStr); rowTypeInfo = (StructTypeInfo) TypeInfoFactory.getStructTypeInfo( colNames, colTypes); rowOI = TypeInfoUtils .getStandardJavaObjectInspectorFromTypeInfo(rowTypeInfo); } /** * This method does the work of deserializing a record into Java objects * that Hive can work with via the ObjectInspector interface. For this * SerDe, the blob that is passed in is a JSON string, and the Jackson JSON * parser is being used to translate the string into Java objects. * * The JSON deserialization works by taking the column names in the Hive * table, and looking up those fields in the parsed JSON object. If the * value of the field is not a primitive, the object is parsed further. */ @Override public Object deserialize(Writable blob) throws SerDeException { Map<?, ?> root = null; row.clear(); try { ObjectMapper mapper = new ObjectMapper(); // This is really a Map<String, Object>. For more information about // how // Jackson parses JSON in this example, see // http://wiki.fasterxml.com/JacksonDataBinding root = mapper.readValue(blob.toString(), Map.class); } catch (Exception e) { // 如果为true,不抛出异常,忽略该行数据 if (!ignoreInvalidInput) throw new SerDeException(e); else { return null; } } // Lowercase the keys as expected by hive Map<String, Object> lowerRoot = new HashMap(); for (Map.Entry entry : root.entrySet()) { lowerRoot.put(((String) entry.getKey()).toLowerCase(), entry.getValue()); } root = lowerRoot; Object value = null; for (String fieldName : rowTypeInfo.getAllStructFieldNames()) { try { TypeInfo fieldTypeInfo = rowTypeInfo .getStructFieldTypeInfo(fieldName); value = parseField(root.get(fieldName), fieldTypeInfo); } catch (Exception e) { value = null; } row.add(value); } return row; } /** * Parses a JSON object according to the Hive column's type. * * @param field * - The JSON object to parse * @param fieldTypeInfo * - Metadata about the Hive column * @return - The parsed value of the field */ private Object parseField(Object field, TypeInfo fieldTypeInfo) { switch (fieldTypeInfo.getCategory()) { case PRIMITIVE: // Jackson will return the right thing in this case, so just return // the object if (field instanceof String) { field = field.toString().replaceAll("\n", "\\\\n"); } return field; case LIST: return parseList(field, (ListTypeInfo) fieldTypeInfo); case MAP: return parseMap(field, (MapTypeInfo) fieldTypeInfo); case STRUCT: return parseStruct(field, (StructTypeInfo) fieldTypeInfo); case UNION: // Unsupported by JSON default: return null; } } /** * Parses a JSON object and its fields. The Hive metadata is used to * determine how to parse the object fields. * * @param field * - The JSON object to parse * @param fieldTypeInfo * - Metadata about the Hive column * @return - A map representing the object and its fields */ private Object parseStruct(Object field, StructTypeInfo fieldTypeInfo) { Map<Object, Object> map = (Map<Object, Object>) field; ArrayList<TypeInfo> structTypes = fieldTypeInfo .getAllStructFieldTypeInfos(); ArrayList<String> structNames = fieldTypeInfo.getAllStructFieldNames(); List<Object> structRow = new ArrayList<Object>(structTypes.size()); for (int i = 0; i < structNames.size(); i++) { structRow.add(parseField(map.get(structNames.get(i)), structTypes.get(i))); } return structRow; } /** * Parse a JSON list and its elements. This uses the Hive metadata for the * list elements to determine how to parse the elements. * * @param field * - The JSON list to parse * @param fieldTypeInfo * - Metadata about the Hive column * @return - A list of the parsed elements */ private Object parseList(Object field, ListTypeInfo fieldTypeInfo) { ArrayList<Object> list = (ArrayList<Object>) field; TypeInfo elemTypeInfo = fieldTypeInfo.getListElementTypeInfo(); for (int i = 0; i < list.size(); i++) { list.set(i, parseField(list.get(i), elemTypeInfo)); } return list.toArray(); } /** * Parse a JSON object as a map. This uses the Hive metadata for the map * values to determine how to parse the values. The map is assumed to have a * string for a key. * * @param field * - The JSON list to parse * @param fieldTypeInfo * - Metadata about the Hive column * @return */ private Object parseMap(Object field, MapTypeInfo fieldTypeInfo) { Map<Object, Object> map = (Map<Object, Object>) field; TypeInfo valueTypeInfo = fieldTypeInfo.getMapValueTypeInfo(); for (Map.Entry<Object, Object> entry : map.entrySet()) { map.put(entry.getKey(), parseField(entry.getValue(), valueTypeInfo)); } return map; } /** * Return an ObjectInspector for the row of data */ @Override public ObjectInspector getObjectInspector() throws SerDeException { return rowOI; } /** * Unimplemented */ @Override public SerDeStats getSerDeStats() { return null; } /** * JSON is just a textual representation, so our serialized class is just * Text. */ @Override public Class<? extends Writable> getSerializedClass() { return Text.class; } /** * This method takes an object representing a row of data from Hive, and * uses the ObjectInspector to get the data for each column and serialize * it. This implementation deparses the row into an object that Jackson can * easily serialize into a JSON blob. */ @Override public Writable serialize(Object obj, ObjectInspector oi) throws SerDeException { Object deparsedObj = deparseRow(obj, oi); ObjectMapper mapper = new ObjectMapper(); try { // Let Jackson do the work of serializing the object return new Text(mapper.writeValueAsString(deparsedObj)); } catch (Exception e) { throw new SerDeException(e); } } /** * Deparse a Hive object into a Jackson-serializable object. This uses the * ObjectInspector to extract the column data. * * @param obj * - Hive object to deparse * @param oi * - ObjectInspector for the object * @return - A deparsed object */ private Object deparseObject(Object obj, ObjectInspector oi) { switch (oi.getCategory()) { case LIST: return deparseList(obj, (ListObjectInspector) oi); case MAP: return deparseMap(obj, (MapObjectInspector) oi); case PRIMITIVE: return deparsePrimitive(obj, (PrimitiveObjectInspector) oi); case STRUCT: return deparseStruct(obj, (StructObjectInspector) oi, false); case UNION: // Unsupported by JSON default: return null; } } /** * Deparses a row of data. We have to treat this one differently from other * structs, because the field names for the root object do not match the * column names for the Hive table. * * @param obj * - Object representing the top-level row * @param structOI * - ObjectInspector for the row * @return - A deparsed row of data */ private Object deparseRow(Object obj, ObjectInspector structOI) { return deparseStruct(obj, (StructObjectInspector) structOI, true); } /** * Deparses struct data into a serializable JSON object. * * @param obj * - Hive struct data * @param structOI * - ObjectInspector for the struct * @param isRow * - Whether or not this struct represents a top-level row * @return - A deparsed struct */ private Object deparseStruct(Object obj, StructObjectInspector structOI, boolean isRow) { Map<Object, Object> struct = new HashMap<Object, Object>(); List<? extends StructField> fields = structOI.getAllStructFieldRefs(); for (int i = 0; i < fields.size(); i++) { StructField field = fields.get(i); // The top-level row object is treated slightly differently from // other // structs, because the field names for the row do not correctly // reflect // the Hive column names. For lower-level structs, we can get the // field // name from the associated StructField object. String fieldName = isRow ? colNames.get(i) : field.getFieldName(); ObjectInspector fieldOI = field.getFieldObjectInspector(); Object fieldObj = structOI.getStructFieldData(obj, field); struct.put(fieldName, deparseObject(fieldObj, fieldOI)); } return struct; } /** * Deparses a primitive type. * * @param obj * - Hive object to deparse * @param oi * - ObjectInspector for the object * @return - A deparsed object */ private Object deparsePrimitive(Object obj, PrimitiveObjectInspector primOI) { return primOI.getPrimitiveJavaObject(obj); } private Object deparseMap(Object obj, MapObjectInspector mapOI) { Map<Object, Object> map = new HashMap<Object, Object>(); ObjectInspector mapValOI = mapOI.getMapValueObjectInspector(); Map<?, ?> fields = mapOI.getMap(obj); for (Map.Entry<?, ?> field : fields.entrySet()) { Object fieldName = field.getKey(); Object fieldObj = field.getValue(); map.put(fieldName, deparseObject(fieldObj, mapValOI)); } return map; } /** * Deparses a list and its elements. * * @param obj * - Hive object to deparse * @param oi * - ObjectInspector for the object * @return - A deparsed object */ private Object deparseList(Object obj, ListObjectInspector listOI) { List<Object> list = new ArrayList<Object>(); List<?> field = listOI.getList(obj); ObjectInspector elemOI = listOI.getListElementObjectInspector(); for (Object elem : field) { list.add(deparseObject(elem, elemOI)); } return list; } }
我稍微修改了一点东西,多加了一个参数input.invalid.ignore,对应的变量为:
//遇到非JSON格式输入的时候的处理。
private boolean ignoreInvalidInput;
在deserialize方法中原来是如果传入的是非JSON格式字符串的话,直接抛出了SerDeException,我加了一个参数来控制它是否抛出异常,在initialize方法中初始化这个变量(默认为false):
// 遇到无法转换成JSON对象的字符串时,是否忽略,默认不忽略,抛出异常,设置为true将跳过异常。
ignoreInvalidInput = Boolean.valueOf(tbl.getProperty(
"input.invalid.ignore", "false"));
好的,现在将这个类打成JAR包: JSONSerDe.jar,放在hive_home的auxlib目录下(我的是/etc/hive/auxlib),然后修改hive-env.sh,添加HIVE_AUX_JARS_PATH=/etc/hive/auxlib/JSONSerDe.jar,这样每次运行hive客户端的时候都会将这个jar包添加到classpath,否则在设置SERDE的时候会报找不到类。
现在我们在HIVE中创建一张表用来存放日志数据:
create table test( requestTime BIGINT, requestParams STRUCT<timestamp:BIGINT,phone:STRING,cardName:STRING,provinceCode:STRING,cityCode:STRING>, requestUrl STRING) row format serde "com.besttone.hive.serde.JSONSerDe" WITH SERDEPROPERTIES( "input.invalid.ignore"="true", "requestTime"="$.requestTime", "requestParams.timestamp"="$.requestParams.timestamp", "requestParams.phone"="$.requestParams.phone", "requestParams.cardName"="$.requestParams.cardName", "requestParams.provinceCode"="$.requestParams.provinceCode", "requestParams.cityCode"="$.requestParams.cityCode", "requestUrl"="$.requestUrl");
这个表结构就是按照日志格式设计的,还记得前面说过的日志数据如下:
{"requestTime":1405651379758,"requestParams":{"timestamp":1405651377211,"phone":"02038824941","cardName":"测试商家名称","provinceCode":"440000","cityCode":"440106"},"requestUrl":"/reporter-api/reporter/reporter12/init.do"}
我使用了一个STRUCT类型来保存requestParams的值,row format我们用的是自定义的json serde:com.besttone.hive.serde.JSONSerDe,SERDEPROPERTIES中,除了设置JSON对象的映射关系外,我还设置了一个自定义的参数:"input.invalid.ignore"="true",忽略掉所有非JSON格式的输入行。这里不是真正意义的忽略,只是非法行的每个输出字段都为NULL了,要在结果集上忽略,必须这样写:select * from test where requestUrl is not null;
OK表建好了,现在就差数据了,我们启动flumedemo的WriteLog,往hive表test目录下面输出一些日志数据,然后在进入hive客户端,select * from test;所以字段都正确的解析,大功告成。
flume.conf如下:
tier1.sources=source1 tier1.channels=channel1 tier1.sinks=sink1 tier1.sources.source1.type=avro tier1.sources.source1.bind=0.0.0.0 tier1.sources.source1.port=44444 tier1.sources.source1.channels=channel1 tier1.sources.source1.interceptors=i1 i2 tier1.sources.source1.interceptors.i1.type=regex_filter tier1.sources.source1.interceptors.i1.regex=\\{.*\\} tier1.sources.source1.interceptors.i2.type=timestamp tier1.channels.channel1.type=memory tier1.channels.channel1.capacity=10000 tier1.channels.channel1.transactionCapacity=1000 tier1.channels.channel1.keep-alive=30 tier1.sinks.sink1.type=hdfs tier1.sinks.sink1.channel=channel1 tier1.sinks.sink1.hdfs.path=hdfs://master68:8020/user/hive/warehouse/besttone.db/test tier1.sinks.sink1.hdfs.fileType=DataStream tier1.sinks.sink1.hdfs.writeFormat=Text tier1.sinks.sink1.hdfs.rollInterval=0 tier1.sinks.sink1.hdfs.rollSize=10240 tier1.sinks.sink1.hdfs.rollCount=0 tier1.sinks.sink1.hdfs.idleTimeout=60
besttone.db是我在hive中创建的数据库,了解hive的应该理解没多大问题。
OK,到这篇文章为止,整个从LOG4J生产日志,到flume收集日志,再到用hive离线分析日志,一整套流水线都讲解完了。
原文:http://blog.csdn.net/xiao_jun_0820/article/details/38119123
发表评论
-
基于Flume的美团日志收集系统(一)架构和设计
2015-03-04 17:32 652转自:http://www.aboutyun.co ... -
基于Flume的美团日志收集系统(二)改进和优化
2015-03-04 17:18 917原文:http://blog.csdn.net/lskyne/ ... -
flume 自定义source
2015-03-04 11:16 3618按照以往的惯例,还是需求驱动学习,有位网友在我的flume学习 ... -
flume iterceptor
2015-03-03 22:18 699对于flume拦截器,我的理解是:在app(应用程序日志)和 ...
相关推荐
Flume是一个分布式、可靠、高吞吐量的日志收集系统,能够实时地从Kafka中提取数据,并将其写入到HDFS中。为了实现这一点,需要先安装Flume,版本号为flume-1.9.0-bin.tar.gz。然后,需要配置Flume的配置文件flume....
在这个场景中,我们利用Flume来从Nginx服务器收集日志,并将这些日志数据导入到新版的Hive数据仓库中。下面将详细阐述这个过程涉及的技术要点。 首先,Nginx是一款高性能的HTTP和反向代理服务器,它的日志记录了...
Flume是Apache的一个分布式、可靠且可用于有效收集、聚合和移动大量日志数据的系统。在这个场景中,它被用来从MySQL数据库中抽取数据,并将这些数据流式传输到HDFS、MySQL以及Kafka。 1. **Flume**: Flume的核心...
本项目聚焦于大数据处理,利用Apache Flume、Kafka以及Hive构建了一个高效的数据采集、传输与存储系统,旨在实现日志数据的有效管理和分析。以下将详细阐述项目中的关键技术及其应用。 1. Apache Flume:Flume 是一...
FLUME是Apache的一个数据收集系统,它能够高效、可靠地聚合、传输和处理大规模的日志数据。在这个平台上,FLUME可能会被用来收集服务器产生的各种日志,例如用户浏览行为、点击流数据等,然后将这些数据发送到Hadoop...
6. **查看HDFS中Flume收集的日志**:通过`hdfs dfs -cat /flume/文件名`命令查看HDFS上Flume收集的日志文件内容。 7. **监控与调试**:Flume提供了丰富的日志和监控工具,帮助用户跟踪数据流动,检测和解决问题。...
1. **Flume**: Flume 是 Apache 提供的一个分布式、可靠且可用的服务,用于高效地收集、聚合和移动大量日志数据。它具有高容错性和动态配置能力,支持多种数据源(如网络套接字、简单的文件系统等)和数据接收器(如...
在电商日志分析系统中,Flume 主要负责从各种来源(如服务器、网络设备、应用日志等)收集日志数据。它支持多种数据源(如 syslog、HTTP),能够确保数据传输的高可用性和容错性,通过配置多个source、channel和sink...
Flume是一个日志收集系统,常用于将数据从各种数据源聚合到Hadoop HDFS或其他存储系统。配置Flume涉及定义source、sink和channel,以实现数据流动。 Flink是另一种高性能的流处理框架,它在低延迟和状态管理方面有...
flume、hive和sqoop的实用案例:flume收集日志hive负责处理数据sqoop负责将数据导出到mysql中供页面展示
Hive提供了SQL-like的语言来查询和管理数据,便于非程序员进行数据分析。 实验步骤如下: 1. **环境准备**:启动Hadoop集群,包括HDFS、HBase、Hive、Flume和Sqoop等组件。这些工具分别用于数据存储、NoSQL数据库、...
Flume收集的日志数据会被存储在HDFS上,供Spark进行后续的处理和分析。HDFS的分布式特性保证了数据的可靠性和可扩展性。 最后,PostgreSQL是一种功能强大的开源关系型数据库管理系统,它可能被用作项目的后端存储,...
3. **Flume**:Flume是日志收集、聚合和传输的系统,设计用于高效地从多种数据源收集数据,并将其可靠地传输到集中式存储系统,如HDFS。这对于实时数据流处理和分析非常有用。 4. **MySQL**:MySQL是一款广泛使用的...
Flume 是 Apache 开源项目,主要用于收集、聚合和移动大量日志数据,而 MongoDB 是一个高性能的非关系型数据库(NoSQL),尤其适合处理和存储海量半结构化或非结构化数据。本篇文章将详细介绍如何配置 Flume 以将...
比如Zookeeper用于协调集群中的服务,Pig或Spark可能用于更复杂的数据处理任务,Flume或Kafka用于日志数据的采集和传输,以及可能的可视化工具如Tableau或Grafana来展示分析结果。 总之,这个基于Hadoop、Hive、...
本课程专注于大数据技术在实际场景中的应用,特别是通过Hadoop集群程序设计与开发来构建一个网站流量日志数据分析系统。这个综合项目旨在让学生掌握大数据处理的全流程,包括数据采集、预处理、分析和展示。 1. **...
Flume 是一个分布式、可靠、可扩展的数据收集系统,主要用于从各种来源(例如日志文件、网络等)中实时收集数据,并将其传输到目标系统(例如 HDFS、Hive 等)中。本文档将详细介绍 Flume 消费 Kafka 数据上传 HDFS ...
通过Flume收集日志,MapReduce进行清洗,最后通过Hive进行结构化存储和分析,企业可以有效地挖掘日志数据中的价值,提高运营效率和决策质量。整个流程充分利用了Hadoop的分布式计算能力,实现了大数据处理的高效和可...
- 在离线分析中,Flume 可以作为数据预处理步骤,将原始日志数据导入 Hadoop HDFS,供 MapReduce 或 Hive 进行后续分析。 结合配套视频资源(https://space.bilibili.com/320773563/channel/detail?cid=173209),...