- 浏览: 112310 次
- 性别:
- 来自: 深圳
文章分类
最新评论
-
土豆蛋儿:
我想读取一个外部文件,以什么方式好了? 文件内容经常编辑
flume 自定义source -
土豆蛋儿:
大神,您好。
flume 自定义source
HBase中,表会被划分为1...n个Region,被托管在RegionServer中。Region二个重要的属性:StartKey与EndKey表示这个Region维护的rowKey范围,当我们要读/写数据时,如果rowKey落在某个start-end key范围内,那么就会定位到目标region并且读/写到相关的数据。简单地说,有那么一点点类似人群划分,1-15岁为小朋友,16-39岁为年轻人,40-64为中年人,65岁以上为老年人。(这些数值都是拍脑袋出来的,只是举例,非真实),然后某人找队伍,然后根据年龄,处于哪个范围,就找到它所属的队伍。 : ( 有点废话了。。。。
然后,默认地,当我们只是通过HBaseAdmin指定TableDescriptor来创建一张表时,只有一个region,正处于混沌时期,start-end key无边界,可谓海纳百川。啥样的rowKey都可以接受,都往这个region里装,然而,当数据越来越多,region的size越来越大时,大到一定的阀值,hbase认为再往这个region里塞数据已经不合适了,就会找到一个midKey将region一分为二,成为2个region,这个过程称为分裂(region-split).而midKey则为这二个region的临界,左为N无下界,右为M无上界。< midKey则为阴被塞到N区,> midKey则会被塞到M区。
如何找到midKey?涉及的内容比较多,暂且不去讨论,最简单的可以认为是region的总行数 / 2 的那一行数据的rowKey.虽然实际上比它会稍复杂点。
如果我们就这样默认地,建表,表里不断地Put数据,更严重的是我们的rowkey还是顺序增大的,是比较可怕的。存在的缺点比较明显。
首先是热点写,我们总是会往最大的start-key所在的region写东西,因为我们的rowkey总是会比之前的大,并且hbase的是按升序方式排序的。所以写操作总是被定位到无上界的那个region中。
其次,由于写热点,我们总是往最大start-key的region写记录,之前分裂出来的region不会再被写数据,有点被打进冷宫的赶脚,它们都处于半满状态,这样的分布也是不利的。
如果在写比较频率的场景下,数据增长快,split的次数也会增多,由于split是比较耗时耗资源的,所以我们并不希望这种事情经常发生。
............
看到这些缺点,我们知道,在集群的环境中,为了得到更好的并行性,我们希望有好的load blance,让每个节点提供的请求处理都是均等的。我们也希望,region不要经常split,因为split会使server有一段时间的停顿,如何能做到呢?
随机散列与预分区。二者结合起来,是比较完美的,预分区一开始就预建好了一部分region,这些region都维护着自已的start-end keys,再配合上随机散列,写数据能均等地命中这些预建的region,就能解决上面的那些缺点,大大地提高了性能。
提供2种思路: hash 与 partition.
hash就是rowkey前面由一串随机字符串组成,随机字符串生成方式可以由SHA或者MD5等方式生成,只要region所管理的start-end keys范围比较随机,那么就可以解决写热点问题。
假设rowKey原本是自增长的long型,可以将rowkey转为hash再转为bytes,加上本身id 转为bytes,组成rowkey,这样就生成随便的rowkey。那么对于这种方式的rowkey设计,如何去进行预分区呢?
1.取样,先随机生成一定数量的rowkey,将取样数据按升序排序放到一个集合里
2.根据预分区的region个数,对整个集合平均分割,即是相关的splitKeys.
3.HBaseAdmin.createTable(HTableDescriptor tableDescriptor,byte[][] splitkeys)可以指定预分区的splitKey,即是指定region间的rowkey临界值.
1.创建split计算器,用于从抽样数据中生成一个比较合适的splitKeys
unit test case测试
查看建表结果:执行 scan 'hbase:meta'
[url]
http://www.it165.net/uploadfile/files/2014/0623/20140623172754283.jpg
[/url]
以上我们只是显示了部分region的信息,可以看到region的start-end key 还是比较随机散列的。同样可以查看hdfs的目录结构,的确和预期的38个预分区一致:
[url]
http://www.it165.net/uploadfile/files/2014/0623/20140623172754287.jpg
[/url]
以上,就已经按hash方式,预建好了分区,以后在插入数据的时候,也要按照此rowkeyGenerator的方式生成rowkey,有兴趣的话,也可以做些试验,插入些数据,看看数据的分布。
partition故名思义,就是分区式,这种分区有点类似于mapreduce中的partitioner,将区域用长整数(Long)作为分区号,每个region管理着相应的区域数据,在rowKey生成时,将id取模后,然后拼上id整体作为rowKey.这个比较简单,不需要取样,splitKeys也非常简单,直接是分区号即可。直接上代码吧:
calcSplitKeys方法比较单纯,splitKey就是partition的编号,我们看看测试类:
同样我们可以看看meta表和hdfs的目录结果,其实和hash类似,region都会分好区,在这里就不上图了。
通过partition实现的loadblance写的话,当然生成rowkey方式也要结合当前的region数目取模而求得,大家同样也可以做些实验,看看数据插入后的分布。
在这里也顺提一下,如果是顺序的增长型原id,可以将id保存到一个数据库,传统的也好,redis的也好,每次取的时候,将数值设大1000左右,以后id可以在内存内增长,当内存数量已经超过1000的话,再去load下一个,有点类似于oracle中的sqeuence.
随机分布加预分区也不是一劳永逸的。因为数据是不断地增长的,随着时间不断地推移,已经分好的区域,或许已经装不住更多的数据,当然就要进一步进行split了,同样也会出现性能损耗问题,所以我们还是要规划好数据增长速率,观察好数据定期维护,按需分析是否要进一步分行手工将分区再分好,也或者是更严重的是新建表,做好更大的预分区然后进行数据迁移。小吴只是菜鸟,运维方面也只是自已这样认为而已,供大家作简单的参考吧。如果数据装不住了,对于partition方式预分区的话,如果让它自然分裂的话,情况分严重一点。因为分裂出来的分区号会是一样的,所以计算到partitionId的话,其实还是回到了顺序写年代,会有部分热点写问题出现,如果使用partition方式生成主键的话,数据增长后就要不断地调整分区了,比如增多预分区,或者加入子分区号的处理.(我们的分区号为long型,可以将它作为多级partition)
OK,写到这里,基本已经讲完了防止热点写使用的方法和防止频繁split而采取的预分区。但rowkey设计,远远也不止这些,比如rowkey长度,然后它的长度最大可以为char的MAXVALUE,但是看过之前我写KeyValue的分析知道,我们的数据都是以KeyValue方式存储在MemStore或者HFile中的,每个KeyValue都会存储rowKey的信息,如果rowkey太大的话,比如是128个字节,一行10个字段的表,100万行记录,光rowkey就占了1.2G+所以长度还是不要过长,另外设计,还是按需求来吧。
最后题外话是我想分享我在github中建了一个project,希望做一些hbase一些工具:https://github.com/bdifn/hbase-tools,如果本地装了git的话,可以执行命令: git clone https://github.com/bdifn/hbase-tools.git目前加了一个region-helper子项目,也是目前唯一的一个子项目,项目使用maven管理,主要目的是帮助我们设计rowkey做一些参考,比如我们设计的随机写和预分区测试,提供了抽样的功能,提供了检测随机写的功能,然后统计按目前rowkey设计,随机写n条记录后,统计每个region的记录数,然后显示比例等。
测试仿真模块我程为simualtor,主要是模拟hbase的region行为,simple的实现,仅仅是上面提到的预测我们rowkey设计后,建好预分区后,写数据的的分布比例,而emulation是比较逼真的仿真,设想是我们写数据时,会统计数目的大小,根据我们的hbase-site.xml设定,模拟memStore行为,模拟hfile的行为,最终会生成一份表的报表,比如分区的数据大小,是否split了,等等,以供我们去设计hbase表时有一个参考,但是遗憾的是,由于时间关系,我只花了一点业余时间简单搭了一下框架,目前没有更一步的实现,以后有时间再加以完善,当然也欢迎大家一起加入,一起学习吧。
[url]
http://www.it165.net/uploadfile/files/2014/0623/20140623172754292.jpg
[/url]
项目使用maven管理,为了方便测试,一些组件的实例化,我使用了java的SPI,download源码后,如果想测试自已的rowKeyGeneator的话,打开com.bdifn.hbasetools.regionhelper.rowkey.RowKeyGenerator文件后,替换到你们的ID生成器就可以了。如果是hash的话,抽样和测试等,都是可以复用的。
如测试代码:
执行结果:
原贴地址:http://www.cnblogs.com/bdifn/p/3801737.html
然后,默认地,当我们只是通过HBaseAdmin指定TableDescriptor来创建一张表时,只有一个region,正处于混沌时期,start-end key无边界,可谓海纳百川。啥样的rowKey都可以接受,都往这个region里装,然而,当数据越来越多,region的size越来越大时,大到一定的阀值,hbase认为再往这个region里塞数据已经不合适了,就会找到一个midKey将region一分为二,成为2个region,这个过程称为分裂(region-split).而midKey则为这二个region的临界,左为N无下界,右为M无上界。< midKey则为阴被塞到N区,> midKey则会被塞到M区。
如何找到midKey?涉及的内容比较多,暂且不去讨论,最简单的可以认为是region的总行数 / 2 的那一行数据的rowKey.虽然实际上比它会稍复杂点。
如果我们就这样默认地,建表,表里不断地Put数据,更严重的是我们的rowkey还是顺序增大的,是比较可怕的。存在的缺点比较明显。
首先是热点写,我们总是会往最大的start-key所在的region写东西,因为我们的rowkey总是会比之前的大,并且hbase的是按升序方式排序的。所以写操作总是被定位到无上界的那个region中。
其次,由于写热点,我们总是往最大start-key的region写记录,之前分裂出来的region不会再被写数据,有点被打进冷宫的赶脚,它们都处于半满状态,这样的分布也是不利的。
如果在写比较频率的场景下,数据增长快,split的次数也会增多,由于split是比较耗时耗资源的,所以我们并不希望这种事情经常发生。
............
看到这些缺点,我们知道,在集群的环境中,为了得到更好的并行性,我们希望有好的load blance,让每个节点提供的请求处理都是均等的。我们也希望,region不要经常split,因为split会使server有一段时间的停顿,如何能做到呢?
随机散列与预分区。二者结合起来,是比较完美的,预分区一开始就预建好了一部分region,这些region都维护着自已的start-end keys,再配合上随机散列,写数据能均等地命中这些预建的region,就能解决上面的那些缺点,大大地提高了性能。
提供2种思路: hash 与 partition.
hash就是rowkey前面由一串随机字符串组成,随机字符串生成方式可以由SHA或者MD5等方式生成,只要region所管理的start-end keys范围比较随机,那么就可以解决写热点问题。
long currentId = 1L; byte [] rowkey = Bytes.add(MD5Hash.getMD5AsHex(Bytes.toBytes(currentId)).substring(0, 8).getBytes(), Bytes.toBytes(currentId));
假设rowKey原本是自增长的long型,可以将rowkey转为hash再转为bytes,加上本身id 转为bytes,组成rowkey,这样就生成随便的rowkey。那么对于这种方式的rowkey设计,如何去进行预分区呢?
1.取样,先随机生成一定数量的rowkey,将取样数据按升序排序放到一个集合里
2.根据预分区的region个数,对整个集合平均分割,即是相关的splitKeys.
3.HBaseAdmin.createTable(HTableDescriptor tableDescriptor,byte[][] splitkeys)可以指定预分区的splitKey,即是指定region间的rowkey临界值.
1.创建split计算器,用于从抽样数据中生成一个比较合适的splitKeys
public class HashChoreWoker implements SplitKeysCalculator{ //随机取机数目 private int baseRecord; //rowkey生成器 private RowKeyGenerator rkGen; //取样时,由取样数目及region数相除所得的数量. private int splitKeysBase; //splitkeys个数 private int splitKeysNumber; //由抽样计算出来的splitkeys结果 private byte[][] splitKeys; public HashChoreWoker(int baseRecord, int prepareRegions) { this.baseRecord = baseRecord; //实例化rowkey生成器 rkGen = new HashRowKeyGenerator(); splitKeysNumber = prepareRegions - 1; splitKeysBase = baseRecord / prepareRegions; } public byte[][] calcSplitKeys() { splitKeys = new byte[splitKeysNumber][]; //使用treeset保存抽样数据,已排序过 TreeSet<byte[]> rows = new TreeSet<byte[]>(Bytes.BYTES_COMPARATOR); for (int i = 0; i < baseRecord; i++) { rows.add(rkGen.nextId()); } int pointer = 0; Iterator<byte[]> rowKeyIter = rows.iterator(); int index = 0; while (rowKeyIter.hasNext()) { byte[] tempRow = rowKeyIter.next(); rowKeyIter.remove(); if ((pointer != 0) && (pointer % splitKeysBase == 0)) { if (index < splitKeysNumber) { splitKeys[index] = tempRow; index ++; } } pointer ++; } rows.clear(); rows = null; return splitKeys; } }
KeyGenerator及实现 //interface public interface RowKeyGenerator { byte [] nextId(); } //implements public class HashRowKeyGenerator implements RowKeyGenerator { private long currentId = 1; private long currentTime = System.currentTimeMillis(); private Random random = new Random(); public byte[] nextId() { try { currentTime += random.nextInt(1000); byte[] lowT = Bytes.copy(Bytes.toBytes(currentTime), 4, 4); byte[] lowU = Bytes.copy(Bytes.toBytes(currentId), 4, 4); return Bytes.add(MD5Hash.getMD5AsHex(Bytes.add(lowU, lowT)).substring(0, 8).getBytes(), Bytes.toBytes(currentId)); } finally { currentId++; } } }
unit test case测试
@Test public void testHashAndCreateTable() throws Exception{ HashChoreWoker worker = new HashChoreWoker(1000000,10); byte [][] splitKeys = worker.calcSplitKeys(); HBaseAdmin admin = new HBaseAdmin(HBaseConfiguration.create()); TableName tableName = TableName.valueOf('hash_split_table'); if (admin.tableExists(tableName)) { try { admin.disableTable(tableName); } catch (Exception e) { } admin.deleteTable(tableName); } HTableDescriptor tableDesc = new HTableDescriptor(tableName); HColumnDescriptor columnDesc = new HColumnDescriptor(Bytes.toBytes('info')); columnDesc.setMaxVersions(1); tableDesc.addFamily(columnDesc); admin.createTable(tableDesc ,splitKeys); admin.close(); }
查看建表结果:执行 scan 'hbase:meta'
[url]
http://www.it165.net/uploadfile/files/2014/0623/20140623172754283.jpg
[/url]
以上我们只是显示了部分region的信息,可以看到region的start-end key 还是比较随机散列的。同样可以查看hdfs的目录结构,的确和预期的38个预分区一致:
[url]
http://www.it165.net/uploadfile/files/2014/0623/20140623172754287.jpg
[/url]
以上,就已经按hash方式,预建好了分区,以后在插入数据的时候,也要按照此rowkeyGenerator的方式生成rowkey,有兴趣的话,也可以做些试验,插入些数据,看看数据的分布。
partition故名思义,就是分区式,这种分区有点类似于mapreduce中的partitioner,将区域用长整数(Long)作为分区号,每个region管理着相应的区域数据,在rowKey生成时,将id取模后,然后拼上id整体作为rowKey.这个比较简单,不需要取样,splitKeys也非常简单,直接是分区号即可。直接上代码吧:
public class PartitionRowKeyManager implements RowKeyGenerator, SplitKeysCalculator { public static final int DEFAULT_PARTITION_AMOUNT = 20; private long currentId = 1; private int partition = DEFAULT_PARTITION_AMOUNT; public void setPartition(int partition) { this.partition = partition; } public byte[] nextId() { try { long partitionId = currentId % partition; return Bytes.add(Bytes.toBytes(partitionId), Bytes.toBytes(currentId)); } finally { currentId++; } } public byte[][] calcSplitKeys() { byte[][] splitKeys = new byte[partition - 1][]; for(int i = 1; i < partition ; i ++) { splitKeys[i-1] = Bytes.toBytes((long)i); } return splitKeys; } }
calcSplitKeys方法比较单纯,splitKey就是partition的编号,我们看看测试类:
@Test public void testPartitionAndCreateTable() throws Exception{ PartitionRowKeyManager rkManager = new PartitionRowKeyManager(); //只预建10个分区 rkManager.setPartition(10); byte [][] splitKeys = rkManager.calcSplitKeys(); HBaseAdmin admin = new HBaseAdmin(HBaseConfiguration.create()); TableName tableName = TableName.valueOf('partition_split_table'); if (admin.tableExists(tableName)) { try { admin.disableTable(tableName); } catch (Exception e) { } admin.deleteTable(tableName); } HTableDescriptor tableDesc = new HTableDescriptor(tableName); HColumnDescriptor columnDesc = new HColumnDescriptor(Bytes.toBytes('info')); columnDesc.setMaxVersions(1); tableDesc.addFamily(columnDesc); admin.createTable(tableDesc ,splitKeys); admin.close(); }
同样我们可以看看meta表和hdfs的目录结果,其实和hash类似,region都会分好区,在这里就不上图了。
通过partition实现的loadblance写的话,当然生成rowkey方式也要结合当前的region数目取模而求得,大家同样也可以做些实验,看看数据插入后的分布。
在这里也顺提一下,如果是顺序的增长型原id,可以将id保存到一个数据库,传统的也好,redis的也好,每次取的时候,将数值设大1000左右,以后id可以在内存内增长,当内存数量已经超过1000的话,再去load下一个,有点类似于oracle中的sqeuence.
随机分布加预分区也不是一劳永逸的。因为数据是不断地增长的,随着时间不断地推移,已经分好的区域,或许已经装不住更多的数据,当然就要进一步进行split了,同样也会出现性能损耗问题,所以我们还是要规划好数据增长速率,观察好数据定期维护,按需分析是否要进一步分行手工将分区再分好,也或者是更严重的是新建表,做好更大的预分区然后进行数据迁移。小吴只是菜鸟,运维方面也只是自已这样认为而已,供大家作简单的参考吧。如果数据装不住了,对于partition方式预分区的话,如果让它自然分裂的话,情况分严重一点。因为分裂出来的分区号会是一样的,所以计算到partitionId的话,其实还是回到了顺序写年代,会有部分热点写问题出现,如果使用partition方式生成主键的话,数据增长后就要不断地调整分区了,比如增多预分区,或者加入子分区号的处理.(我们的分区号为long型,可以将它作为多级partition)
OK,写到这里,基本已经讲完了防止热点写使用的方法和防止频繁split而采取的预分区。但rowkey设计,远远也不止这些,比如rowkey长度,然后它的长度最大可以为char的MAXVALUE,但是看过之前我写KeyValue的分析知道,我们的数据都是以KeyValue方式存储在MemStore或者HFile中的,每个KeyValue都会存储rowKey的信息,如果rowkey太大的话,比如是128个字节,一行10个字段的表,100万行记录,光rowkey就占了1.2G+所以长度还是不要过长,另外设计,还是按需求来吧。
最后题外话是我想分享我在github中建了一个project,希望做一些hbase一些工具:https://github.com/bdifn/hbase-tools,如果本地装了git的话,可以执行命令: git clone https://github.com/bdifn/hbase-tools.git目前加了一个region-helper子项目,也是目前唯一的一个子项目,项目使用maven管理,主要目的是帮助我们设计rowkey做一些参考,比如我们设计的随机写和预分区测试,提供了抽样的功能,提供了检测随机写的功能,然后统计按目前rowkey设计,随机写n条记录后,统计每个region的记录数,然后显示比例等。
测试仿真模块我程为simualtor,主要是模拟hbase的region行为,simple的实现,仅仅是上面提到的预测我们rowkey设计后,建好预分区后,写数据的的分布比例,而emulation是比较逼真的仿真,设想是我们写数据时,会统计数目的大小,根据我们的hbase-site.xml设定,模拟memStore行为,模拟hfile的行为,最终会生成一份表的报表,比如分区的数据大小,是否split了,等等,以供我们去设计hbase表时有一个参考,但是遗憾的是,由于时间关系,我只花了一点业余时间简单搭了一下框架,目前没有更一步的实现,以后有时间再加以完善,当然也欢迎大家一起加入,一起学习吧。
[url]
http://www.it165.net/uploadfile/files/2014/0623/20140623172754292.jpg
[/url]
项目使用maven管理,为了方便测试,一些组件的实例化,我使用了java的SPI,download源码后,如果想测试自已的rowKeyGeneator的话,打开com.bdifn.hbasetools.regionhelper.rowkey.RowKeyGenerator文件后,替换到你们的ID生成器就可以了。如果是hash的话,抽样和测试等,都是可以复用的。
如测试代码:
public class HBaseSimulatorTest { //通过SPI方式获取HBaseSimulator实例,SPI的实现为simgple private HBaseSimulator hbase = BeanFactory.getInstance().getBeanInstance(HBaseSimulator.class); //获取RowKeyGenerator实例,SPI的实现为hashRowkey private RowKeyGenerator rkGen = BeanFactory.getInstance().getBeanInstance(RowKeyGenerator.class); //初如化苦工,去检测100w个抽样rowkey,然后生成一组splitKeys HashChoreWoker worker = new HashChoreWoker(1000000,10); @Test public void testHash(){ byte [][] splitKeys = worker.calcSplitKeys(); hbase.createTable('user', splitKeys); //插入1亿条记录,看数据分布 TableName tableName = TableName.valueOf('user'); for(int i = 0; i < 100000000; i ++) { Put put = new Put(rkGen.nextId()); hbase.put(tableName, put); } hbase.report(tableName); } @Test public void testPartition(){ //default 20 partitions. PartitionRowKeyManager rkManager = new PartitionRowKeyManager(); byte [][] splitKeys = rkManager.calcSplitKeys(); hbase.createTable('person', splitKeys); TableName tableName = TableName.valueOf('person'); //插入1亿条记录,看数据分布 for(int i = 0; i < 100000000; i ++) { Put put = new Put(rkManager.nextId()); hbase.put(tableName, put); } hbase.report(tableName); } }
执行结果:
Execution Reprort:[StartRowkey:puts requsts:(put ratio)] :9973569:(1.0015434) 1986344a®:9999295:(1.0041268) 331ee65f)g:10012532:(1.005456) 4cbfd4f6o0:9975842:(1.0017716) 664c6388u:10053337:(1.0095537) 800945e0V:9998719:(1.0040689) 99a158d9Zó:10000563:(1.0042541) b33a2223Ææ:9964921:(1.000675) ccbcf370*â:9958200:(1.0) e63b8334gÁ:10063022:(1.0105262) total requests:100000000 Execution Reprort:[StartRowkey:puts requsts:(put ratio)] :5000000:(1.0) :5000000:(1.0) :5000000:(1.0) :5000000:(1.0) :5000000:(1.0) :5000000:(1.0) :5000000:(1.0) :5000000:(1.0) :5000000:(1.0) :5000000:(1.0) :5000000:(1.0) :5000000:(1.0) :5000000:(1.0) :5000000:(1.0) :5000000:(1.0) :5000000:(1.0) :5000000:(1.0) :5000000:(1.0) :5000000:(1.0) :5000000:(1.0) total requests:100000000
原贴地址:http://www.cnblogs.com/bdifn/p/3801737.html
发表评论
-
hbase bluk loading
2015-03-03 11:29 816使用HBASE的BULK LOAD 一、 ... -
hive + hbase
2015-01-04 10:42 776环境配置: hadoop-2.0.0-cdh4.3.0 (4 ... -
hbase 布隆过滤器
2014-12-23 10:48 2343布隆过滤器: 1.原理? 数据块索引提供了一个有效的方法, ... -
hbase 自定义filter
2014-12-17 17:22 665base自带的filter已经很多了,按照RK,CF,CQ过滤 ... -
HBase性能优化方法总结(四):数据计算
2014-12-12 10:57 676HBase性能优化方法总结(四):数据计算 本文主要是从HB ... -
HBase性能优化方法总结(三):读表操作
2014-12-12 10:56 649HBase性能优化方法总结(三):读表操作 本文主要是从HB ... -
HBase性能优化方法总结(二):写表操作
2014-12-12 10:55 526HBase性能优化方法总结 ... -
hbase 表设计
2014-12-12 10:54 653HBase性能优化方法总结(一):表的设计 本文主要是从HB ... -
hbase 快照
2014-12-10 15:52 507Apache HBase快照介绍 分享 ... -
hbase 日常维护
2014-12-09 10:46 496一,基本命令: ... -
hbase scan问题
2014-07-25 10:52 8571.通过scan取完数据后,记得要关闭ResultSc ...
相关推荐
预分区是HBase表设计中的一个重要策略,它能有效解决因region split带来的资源消耗问题。在表创建时,用户可以根据一定的规则预先划分region,避免在数据快速增长时频繁进行split操作。这不仅可以提高HBase的性能,...
在设计RowKey时,通常会考虑业务需求、时间戳、分区键等要素,使得RowKey具有良好的散列特性,这样可以提高查询效率并减少单个Region的压力。 "HDFSRowKey.scala"可能涉及将Hadoop的HDFS文件系统与HBase的RowKey...
在RowKey前添加随机前缀(通常称为“加盐”),可以使原本类似的RowKey散列到不同的Region,从而缓解热点问题。但这种方法可能会增加读取操作的复杂度。 ##### 4. 哈希与反转 - **哈希**:使用哈希函数对RowKey进行...
1. 表设计:预分区是避免初期数据热点的关键,应根据预期数据量合理划分Region。 2. RowKey优化:遵循Rowkey设计原则,保证数据的均衡分布和高效查询。 3. Column Family管理:尽量减少Column Family数量,以降低...
9. HBase的预分区设计是为了优化表的分布和读写性能,合理地设置分区可以避免数据倾斜和热点问题,使得数据能够均匀分布在不同的RegionServer上。 10. HBase的rowkey设计技巧包括rowkey的长度原则、散列原则和唯一...
为避免这种情况,可以考虑对时间戳进行散列处理,或者在设计时就避免使用过热的rowkey模式。 除了上述提到的优化方法,HBase的性能优化还可以涉及更多的方面,如合理调整HBase配置、分区和负载均衡策略、压缩和存储...
表创建时需进行预分区,避免数据倾斜。 2. **BlockCache设置优化**: - 原理:BlockCache作为读缓存,对读性能有显著影响。其大小和策略选择直接影响读取效率和垃圾收集(GC)性能。 - 观察与确认:分析缓存未...
【HBASERegion数量增多问题...通过合理设计ROWKEY、适时合并Region以及优化配置,可以有效地解决Region数量过多的问题,提升HBase集群的性能和稳定性。同时,监控和定期评估Region分布状况也是维护系统健康运行的关键。
HBASE的行键(RowKey)设计非常关键,因为它们决定了数据的分区和查询方式。在本文中,使用md5哈希散列和字符串截取来构造RowKey,确保数据能够均匀分布在各个区域服务器(RegionServer)上,避免出现热点问题。这种...
### HBase官方文档知识点梳理 ...以上是对HBase官方文档的综合总结,涵盖了HBase的基础知识、配置、数据模型设计、性能调优等方面的内容。这些知识点对于理解和掌握HBase的工作原理及实际应用有着重要的指导意义。
- **RowKey设计**:RowKey是HBase中的关键,用于快速定位数据。理想的RowKey应短小且有序,便于查询。常见的设计策略包括基于id+时间戳或哈希散列。RowKey长度通常在10到100 bytes之间,且为8字节整数倍,以提高...
HBase 的 RowKey 设计与优化 #### 3.1 RowKey 设计原则 - **字典排序**:RowKey 应按照字典顺序排序。 - **长度优化**:RowKey 越短越好,一般建议控制在 10~100 bytes,且最好为 8 字节的倍数。 - **散列**:使用...