`
乡里伢崽
  • 浏览: 111906 次
  • 性别: Icon_minigender_1
  • 来自: 深圳
社区版块
存档分类
最新评论

hive + hbase

 
阅读更多
环境配置:

hadoop-2.0.0-cdh4.3.0 (4 nodes, 24G mem/node)

hbase-0.94.6-cdh4.3.0 (4 nodes,maxHeapMB=9973/node)

hive-0.10.0-cdh4.3.0



一、查询性能比较:

    query1:
        select count(1) from on_hdfs;
        select count(1) from on_hbase;
    query2(根据key过滤)
        select * from on_hdfs
            where key = '13400000064_1388056783_460095106148962';
        select * from on_hbase
            where key = '13400000064_1388056783_460095106148962';
    query3(根据value过滤)
        select * from on_hdfs where value = 'XXX';
        select * from on_hbase where value = 'XXX';



    on_hdfs (20万记录,150M,TextFile on HDFS)
    on_hbase(20万记录,160M,HFile on HDFS)



    

    on_hdfs (2500万记录,2.7G,TextFile on HDFS)
    on_hbase(2500万记录,3G,HFile on HDFS)



   



     从上图可以看出,
            对于全表扫描,hive_on_hbase查询时候如果不设置catching,性能远远不及hive_on_hdfs;
            根据rowkey过滤,hive_on_hbase性能上略好于hive_on_hdfs,特别是数据量大的时候;
            设置了caching之后,尽管比不设caching好很多,但还是略逊于hive_on_hdfs;


二、Hive over HBase原理


    Hive与HBase利用两者本身对外的API来实现整合,主要是靠HBaseStorageHandler进行通信,利用HBaseStorageHandler,Hive可以获取到Hive表对应的HBase表名,列簇以及列,InputFormat和OutputFormat类,创建和删除HBase表等。
    Hive访问HBase中表数据,实质上是通过MapReduce读取HBase表数据,其实现是在MR中,使用HiveHBaseTableInputFormat完成对HBase表的切分,获取RecordReader对象来读取数据。
    对HBase表的切分原则是一个Region切分成一个Split,即表中有多少个Regions,MR中就有多少个Map;
    读取HBase表数据都是通过构建Scanner,对表进行全表扫描,如果有过滤条件,则转化为Filter。当过滤条件为rowkey时,则转化为对rowkey的过滤;
    Scanner通过RPC调用RegionServer的next()来获取数据;



三、性能瓶颈分析
1. Map Task

    Hive读取HBase表,通过MR,最终使用HiveHBaseTableInputFormat来读取数据,在getSplit()方法中对HBase表进行切分,切分原则是根据该表对应的HRegion,将每一个Region作为一个InputSplit,即,该表有多少个Region,就有多少个Map Task;
    每个Region的大小由参数hbase.hregion.max.filesize控制,默认10G,这样会使得每个map task处理的数据文件太大,map task性能自然很差;
    为HBase表预分配Region,使得每个Region的大小在合理的范围;
    下图是给该表预分配了15个Region,并且控制key均匀分布在每个Region上之后,查询的耗时对比,其本质上是Map数增加。


   


2. Scan RPC 调用:
•    在Scan中的每一次next()方法都会为每一行数据生成一个单独的RPC请求, query1和query3中,全表有2500万行记录,因此要2500万次RPC请求;

   
•    扫描器缓存(Scanner Caching):HBase为扫描器提供了缓存的功能,可以通过参数hbase.client.scanner.caching来设置;默认是1;缓存的原理是通过设置一个缓存的行数,当客户端通过RPC请求RegionServer获取数据时,RegionServer先将数据缓存到内存,当缓存的数据行数达到参数设置的数量时,再一起返回给客户端。这样,通过设置扫描器缓存,就可以大幅度减少客户端RPC调用RegionServer的次数;但并不是缓存设置的越大越好,如果设置的太大,每一次RPC调用将会占用更长的时间,因为要获取更多的数据并传输到客户端,如果返回给客户端的数据超出了其堆的大小,程序就会终止并跑出OOM异常;

    所以,需要为少量的RPC请求次数和客户端以及服务端的内存消耗找到平衡点。


    rpc.metrics.next_num_ops
    未设置caching,每个RegionServer上通过next()方法调用RPC的次数峰值达到1000万:


    设置了caching=2000,每个RegionServer上通过next()方法调用RPC的次数峰值只有4000:



    设置了caching之后,几个RegionServer上的内存消耗明显增加:





•    扫描器批量(Scanner Batch):缓存是面向行一级的操作,而批量则是面向列一级的操作。批量可以控制每一次next()操作要取回多少列。比如,在扫描器中设置setBatch(5),则一次next()返回的Result实例会包括5列。
•    RPC请求次数的计算公式如下:
RPC请求次数 =
(表行数 * 每行的列数)/ Min(每行的列数,批量大小)  / 扫描器缓存


因此,在使用Hive over HBase,对HBase中的表做统计分析时候,需要特别注意以下几个方面:

1. 对HBase表进行预分配Region,根据表的数据量估算出一个合理的Region数;

2. rowkey设计上需要注意,尽量使rowkey均匀分布在预分配的N个Region上;

3. 通过set hbase.client.scanner.caching设置合理的扫描器缓存;

4. 关闭mapreduce的推测执行:

   set mapred.map.tasks.speculative.execution = false;
   set mapred.reduce.tasks.speculative.execution = false;

分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics