`
com0606
  • 浏览: 60970 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

关于synchronized和lock

 
阅读更多

目前在Java中存在两种锁机制:synchronized和Lock,Lock接口及其实现类是JDK5增加的内容,其作者是大名鼎鼎的并发专家Doug Lea。本文并不比较synchronized与Lock孰优孰劣,只是介绍二者的实现原理。

数据同步需要依赖锁,那锁的同步又依赖谁?synchronized给出的答案是在软件层面依赖JVM,而Lock给出的方案是在硬件层面依赖特殊的CPU指令,大家可能会进一步追问:JVM底层又是如何实现synchronized的?

 

本文所指说的JVM是指Hotspot的6u23版本,下面首先介绍synchronized的实现:

synrhronized关键字简洁、清晰、语义明确,因此即使有了Lock接口,使用的还是非常广泛。其应用层的语义是可以把任何一个非null对象 作为"锁",当synchronized作用在方法上时,锁住的便是对象实例(this);当作用在静态方法时锁住的便是对象对应的Class实例,因为 Class数据存在于永久带,因此静态方法锁相当于该类的一个全局锁;当synchronized作用于某一个对象实例时,锁住的便是对应的代码块。在 HotSpot JVM实现中,锁有个专门的名字:对象监视器。  

1. 线程状态及状态转换

当多个线程同时请求某个对象监视器时,对象监视器会设置几种状态用来区分请求的线程:

 

Contention List:所有请求锁的线程将被首先放置到该竞争队列

Entry List:Contention List中那些有资格成为候选人的线程被移到Entry List

Wait Set:那些调用wait方法被阻塞的线程被放置到Wait Set

OnDeck:任何时刻最多只能有一个线程正在竞争锁,该线程称为OnDeck

Owner:获得锁的线程称为Owner

!Owner:释放锁的线程

下图反映了个状态转换关系:



 

 

 

新请求锁的线程将首先被加入到ConetentionList中,当某个拥有锁的线程(Owner状态)调用unlock之后,如果发现 EntryList为空则从ContentionList中移动线程到EntryList,下面说明下ContentionList和EntryList 的实现方式:

1.1 ContentionList虚拟队列

ContentionList并不是一个真正的Queue,而只是一个虚拟队列,原因在于ContentionList是由Node及其next指 针逻辑构成,并不存在一个Queue的数据结构。ContentionList是一个后进先出(LIFO)的队列,每次新加入Node时都会在队头进行, 通过CAS改变第一个节点的的指针为新增节点,同时设置新增节点的next指向后续节点,而取得操作则发生在队尾。显然,该结构其实是个Lock- Free的队列。

因为只有Owner线程才能从队尾取元素,也即线程出列操作无争用,当然也就避免了CAS的ABA问题。



 

1.2 EntryList

EntryList与ContentionList逻辑上同属等待队列,ContentionList会被线程并发访问,为了降低对 ContentionList队尾的争用,而建立EntryList。Owner线程在unlock时会从ContentionList中取出若干个线程放到 EntryList,并会指定EntryList中的某个线程(一般为Head)为Ready(OnDeck)线程。Owner线程并不是把锁传递给 OnDeck线程,只是把竞争锁的权利交给OnDeck,OnDeck线程需要重新竞争锁。这样做虽然牺牲了一定的公平性,但极大的提高了整体吞吐量,在 Hotspot中把OnDeck的选择行为称之为“竞争切换”。

 

OnDeck线程获得锁后即变为owner线程,无法获得锁则会依然留在EntryList中,考虑到公平性,在EntryList中的位置不 发生变化(依然在队头)。如果Owner线程被wait方法阻塞,则转移到WaitSet队列;如果在某个时刻被notify/notifyAll唤醒, 则再次转移到EntryList。

2. 自旋锁

那些处于ContetionList、EntryList、WaitSet中的线程均处于阻塞状态,阻塞操作由操作系统完成(在Linxu下通 过pthread_mutex_lock函数)。线程被阻塞后便进入内核(Linux)调度状态,这个会导致系统在用户态与内核态之间来回切换,严重影响锁的性能

 

缓解上述问题的办法便是自旋,其原理是:当发生争用时,若Owner线程能在很短的时间内释放锁,则那些正在争用线程可以稍微等一等(自旋), 在Owner线程释放锁后,争用线程可能会立即得到锁,从而避免了系统阻塞。但Owner运行的时间可能会超出了临界值,争用线程自旋一段时间后还是无法获得锁,这时争用线程则会停止自旋进入阻塞状态(后退)。基本思路就是自旋,不成功再阻塞,尽量降低阻塞的可能性,这对那些执行时间很短的代码块来说有非 常重要的性能提高。自旋锁有个更贴切的名字:自旋-指数后退锁,也即复合锁。很显然,自旋在多处理器上才有意义。

 

还有个问题是,线程自旋时做些啥?其实啥都不做,可以执行几次for循环,可以执行几条空的汇编指令,目的是占着CPU不放,等待获取锁的机 会。所以说,自旋是把双刃剑,如果旋的时间过长会影响整体性能,时间过短又达不到延迟阻塞的目的。显然,自旋的周期选择显得非常重要,但这与操作系统、硬件体系、系统的负载等诸多场景相关,很难选择,如果选择不当,不但性能得不到提高,可能还会下降,因此大家普遍认为自旋锁不具有扩展性。

自旋优化策略

对自旋锁周期的选择上,HotSpot认为最佳时间应是一个线程上下文切换的时间,但目前并没有做到。经过调查,目前只是通过汇编暂停了几个CPU周期,除了自旋周期选择,HotSpot还进行许多其他的自旋优化策略,具体如下:

如果平均负载小于CPUs则一直自旋

如果有超过(CPUs/2)个线程正在自旋,则后来线程直接阻塞

如果正在自旋的线程发现Owner发生了变化则延迟自旋时间(自旋计数)或进入阻塞

如果CPU处于节电模式则停止自旋

自旋时间的最坏情况是CPU的存储延迟(CPU A存储了一个数据,到CPU B得知这个数据直接的时间差)

自旋时会适当放弃线程优先级之间的差异

那synchronized实现何时使用了自旋锁?答案是在线程进入ContentionList时,也即第一步操作前。线程在进入等待队列时 首先进行自旋尝试获得锁,如果不成功再进入等待队列。这对那些已经在等待队列中的线程来说,稍微显得不公平。还有一个不公平的地方是自旋线程可能会抢占了 Ready线程的锁。自旋锁由每个监视对象维护,每个监视对象一个。

3. JVM1.6偏向锁

在JVM1.6中引入了偏向锁,偏向锁主要解决无竞争下的锁性能问题,首先我们看下无竞争下锁存在什么问题:

现在几乎所有的锁都是可重入的,也即已经获得锁的线程可以多次锁住/解锁监视对象,按照之前的HotSpot设计,每次加锁/解锁都会涉及到一些CAS操作(比如对等待队列的CAS操作),CAS操作会延迟本地调用,因此偏向锁的想法是一旦线程第一次获得了监视对象,之后让监视对象“偏向”这个 线程,之后的多次调用则可以避免CAS操作,说白了就是置个变量,如果发现为true则无需再走各种加锁/解锁流程。但还有很多概念需要解释、很多引入的问题需要解决:

3.1 CAS及SMP架构

CAS为什么会引入本地延迟?这要从SMP(对称多处理器)架构说起,下图大概表明了SMP的结构:



 

其意思是所有的CPU会共享一条系统总线(BUS),靠此总线连接主存。每个核都有自己的一级缓存,各核相对于BUS对称分布,因此这种结构称为“对称多处理器”。

 

而CAS的全称为Compare-And-Swap,是一条CPU的原子指令,其作用是让CPU比较后原子地更新某个位置的值,经过调查发现, 其实现方式是基于硬件平台的汇编指令,就是说CAS是靠硬件实现的,JVM只是封装了汇编调用,那些AtomicInteger类便是使用了这些封装后的接口。

 

Core1和Core2可能会同时把主存中某个位置的值Load到自己的L1 Cache中,当Core1在自己的L1 Cache中修改这个位置的值时,会通过总线,使Core2中L1 Cache对应的值“失效”,而Core2一旦发现自己L1 Cache中的值失效(称为Cache命中缺失)则会通过总线从内存中加载该地址最新的值,大家通过总线的来回通信称为“Cache一致性流量”,因为总 线被设计为固定的“通信能力”,如果Cache一致性流量过大,总线将成为瓶颈。而当Core1和Core2中的值再次一致时,称为“Cache一致 性”,从这个层面来说,锁设计的终极目标便是减少Cache一致性流量。

 

而CAS恰好会导致Cache一致性流量,如果有很多线程都共享同一个对象,当某个Core CAS成功时必然会引起总线风暴,这就是所谓的本地延迟,本质上偏向锁就是为了消除CAS,降低Cache一致性流量。

 

Cache一致性:

 

上面提到Cache一致性,其实是有协议支持的,现在通用的协议是MESI(最早由Intel开始支持),具体参考:http://en.wikipedia.org/wiki/MESI_protocol,以后会仔细讲解这部分。

Cache一致性流量的例外情况:

 

其实也不是所有的CAS都会导致总线风暴,这跟Cache一致性协议有关,具体参考:http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot

NUMA(Non Uniform Memory Access Achitecture)架构:

与SMP对应还有非对称多处理器架构,现在主要应用在一些高端处理器上,主要特点是没有总线,没有公用主存,每个Core有自己的内存,针对这种结构此处不做讨论。

3.2 偏向解除

偏向锁引入的一个重要问题是,在多争用的场景下,如果另外一个线程争用偏向对象,拥有者需要释放偏向锁,而释放的过程会带来一些性能开销,但总体说来偏向锁带来的好处还是大于CAS代价的。

4. 总结

关于锁,JVM中还引入了一些其他技术比如锁膨胀等,这些与自旋锁、偏向锁相比影响不是很大,这里就不做介绍。

通过上面的介绍可以看出,synchronized的底层实现主要依靠Lock-Free的队列,基本思路是自旋后阻塞,竞争切换后继续竞争锁,稍微牺牲了公平性,但获得了高吞吐量。

 

 

 

JVM中的另一种锁Lock的实现

 

前文分析了JVM中的synchronized实现,本文继续分析JVM中的另一种锁Lock的实现。与synchronized不同的是,Lock完全用Java写成,在java这个层面是无关JVM实现的。

在 java.util.concurrent.locks包中有很多Lock的实现类,常用的有ReentrantLock、 ReadWriteLock(实现类ReentrantReadWriteLock),其实现都依赖 java.util.concurrent.AbstractQueuedSynchronizer类,实现思路都大同小异,因此我们以 ReentrantLock作为讲解切入点。

1. ReentrantLock的调用过程

经过观察ReentrantLock把所有Lock接口的操作都委派到一个Sync类上,该类继承了AbstractQueuedSynchronizer:

view plain

static abstract class Sync extends AbstractQueuedSynchronizer  

Sync又有两个子类:

view plain

final static class NonfairSync extends Sync  

view plain

final static class FairSync extends Sync  

显然是为了支持公平锁和非公平锁而定义,默认情况下为非公平锁。

先理一下Reentrant.lock()方法的调用过程(默认非公平锁):



 

这 些讨厌的Template模式导致很难直观的看到整个调用过程,其实通过上面调用过程及AbstractQueuedSynchronizer的注释可以发现,AbstractQueuedSynchronizer中抽象了绝大多数Lock的功能,而只把tryAcquire方法延迟到子类中实现。 tryAcquire方法的语义在于用具体子类判断请求线程是否可以获得锁,无论成功与否AbstractQueuedSynchronizer都将处理后面的流程。

2. 锁实现(加锁)

简单说来,AbstractQueuedSynchronizer会把所有的请求线程构成一个CLH队列,当一个线程执行完毕(lock.unlock())时会激活自己的后继节点,但正在执行的线程并不在队列中,而那些等待执行的线程全 部处于阻塞状态,经过调查线程的显式阻塞是通过调用LockSupport.park()完成,而LockSupport.park()则调用 sun.misc.Unsafe.park()本地方法,再进一步,HotSpot在Linux中中通过调用pthread_mutex_lock函数把 线程交给系统内核进行阻塞。

该队列如图:




 

与synchronized相同的是,这也是一个虚拟队列,不存在队列实例,仅存在节点之间的前后关系。令人疑惑的是为什么采用CLH队列呢?原生的CLH队列是用于自旋锁,但Doug Lea把其改造为阻塞锁。

当有线程竞争锁时,该线程会首先尝试获得锁,这对于那些已经在队列中排队的线程来说显得不公平,这也是非公平锁的由来,与synchronized实现类似,这样会极大提高吞吐量。

如 果已经存在Running线程,则新的竞争线程会被追加到队尾,具体是采用基于CAS的Lock-Free算法,因为线程并发对Tail调用CAS可能会 导致其他线程CAS失败,解决办法是循环CAS直至成功。AbstractQueuedSynchronizer的实现非常精巧,令人叹为观止,不入细节 难以完全领会其精髓,下面详细说明实现过程:

2.1 Sync.nonfairTryAcquire

nonfairTryAcquire方法将是lock方法间接调用的第一个方法,每次请求锁时都会首先调用该方法。

view plain

final boolean nonfairTryAcquire(int acquires) {  

    final Thread current = Thread.currentThread();  

    int c = getState();  

    if (c == 0) {  

        if (compareAndSetState(0, acquires)) {  

            setExclusiveOwnerThread(current);  

            return true;  

        }  

    }  

    else if (current == getExclusiveOwnerThread()) {  

        int nextc = c + acquires;  

        if (nextc < 0) // overflow  

            throw new Error("Maximum lock count exceeded");  

        setState(nextc);  

        return true;  

    }  

    return false;  

}  

该方法会首先判断当前状态,如果c==0说明没有线程正在竞争该锁,如果不c !=0 说明有线程正拥有了该锁。

如 果发现c==0,则通过CAS设置该状态值为acquires,acquires的初始调用值为1,每次线程重入该锁都会+1,每次unlock都会 -1,但为0时释放锁。如果CAS设置成功,则可以预计其他任何线程调用CAS都不会再成功,也就认为当前线程得到了该锁,也作为Running线程,很 显然这个Running线程并未进入等待队列。

如果c !=0 但发现自己已经拥有锁,只是简单地++acquires,并修改status值,但因为没有竞争,所以通过setStatus修改,而非CAS,也就是说这段代码实现了偏向锁的功能,并且实现的非常漂亮。

 

2.2 AbstractQueuedSynchronizer.addWaiter

addWaiter方法负责把当前无法获得锁的线程包装为一个Node添加到队尾:

view plain

private Node addWaiter(Node mode) {  

    Node node = new Node(Thread.currentThread(), mode);  

    // Try the fast path of enq; backup to full enq on failure  

    Node pred = tail;  

    if (pred != null) {  

        node.prev = pred;  

        if (compareAndSetTail(pred, node)) {  

            pred.next = node;  

            return node;  

        }  

    }  

    enq(node);  

    return node;  

}  

其中参数mode是独占锁还是共享锁,默认为null,独占锁。追加到队尾的动作分两步:

如果当前队尾已经存在(tail!=null),则使用CAS把当前线程更新为Tail

如果当前Tail为null或则线程调用CAS设置队尾失败,则通过enq方法继续设置Tail

下面是enq方法:

view plain

private Node enq(final Node node) {  

    for (;;) {  

        Node t = tail;  

        if (t == null) { // Must initialize  

            Node h = new Node(); // Dummy header  

            h.next = node;  

            node.prev = h;  

            if (compareAndSetHead(h)) {  

                tail = node;  

                return h;  

            }  

        }  

        else {  

            node.prev = t;  

            if (compareAndSetTail(t, node)) {  

                t.next = node;  

                return t;  

            }  

        }  

    }  

}  

 

该方法就是循环调用CAS,即使有高并发的场景,无限循环将会最终成功把当前线程追加到队尾(或设置队头)。总而言之,addWaiter的目的就是通过CAS把当前现在追加到队尾,并返回包装后的Node实例。

把线程要包装为Node对象的主要原因,除了用Node构造供虚拟队列外,还用Node包装了各种线程状态,这些状态被精心设计为一些数字值:

SIGNAL(-1) :线程的后继线程正/已被阻塞,当该线程release或cancel时要重新这个后继线程(unpark)

CANCELLED(1):因为超时或中断,该线程已经被取消

CONDITION(-2):表明该线程被处于条件队列,就是因为调用了Condition.await而被阻塞

PROPAGATE(-3):传播共享锁

0:0代表无状态

2.3 AbstractQueuedSynchronizer.acquireQueued

acquireQueued的主要作用是把已经追加到队列的线程节点(addWaiter方法返回值)进行阻塞,但阻塞前又通过tryAccquire重试是否能获得锁,如果重试成功能则无需阻塞,直接返回

view plain

final boolean acquireQueued(final Node node, int arg) {  

    try {  

        boolean interrupted = false;  

        for (;;) {  

            final Node p = node.predecessor();  

            if (p == head && tryAcquire(arg)) {  

                setHead(node);  

                p.next = null; // help GC  

                return interrupted;  

            }  

            if (shouldParkAfterFailedAcquire(p, node) &&  

                parkAndCheckInterrupt())  

                interrupted = true;  

        }  

    } catch (RuntimeException ex) {  

        cancelAcquire(node);  

        throw ex;  

    }  

}  

 

仔 细看看这个方法是个无限循环,感觉如果p == head && tryAcquire(arg)条件不满足循环将永远无法结束,当然不会出现死循环,奥秘在于第12行的parkAndCheckInterrupt会把 当前线程挂起,从而阻塞住线程的调用栈。

view plain

private final boolean parkAndCheckInterrupt() {  

    LockSupport.park(this);  

    return Thread.interrupted();  

}  

如 前面所述,LockSupport.park最终把线程交给系统(Linux)内核进行阻塞。当然也不是马上把请求不到锁的线程进行阻塞,还要检查该线程 的状态,比如如果该线程处于Cancel状态则没有必要,具体的检查在shouldParkAfterFailedAcquire中:

view plain

  private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {  

      int ws = pred.waitStatus;  

      if (ws == Node.SIGNAL)  

          /* 

           * This node has already set status asking a release 

           * to signal it, so it can safely park 

           */  

          return true;  

      if (ws > 0) {  

          /* 

           * Predecessor was cancelled. Skip over predecessors and 

           * indicate retry. 

           */  

   do {  

node.prev = pred = pred.prev;  

   } while (pred.waitStatus > 0);  

   pred.next = node;  

      } else {  

          /* 

           * waitStatus must be 0 or PROPAGATE. Indicate that we 

           * need a signal, but don't park yet. Caller will need to 

           * retry to make sure it cannot acquire before parking.  

           */  

          compareAndSetWaitStatus(pred, ws, Node.SIGNAL);  

      }   

      return false;  

  }  

检查原则在于:

规则1:如果前继的节点状态为SIGNAL,表明当前节点需要unpark,则返回成功,此时acquireQueued方法的第12行(parkAndCheckInterrupt)将导致线程阻塞

规则2:如果前继节点状态为CANCELLED(ws>0),说明前置节点已经被放弃,则回溯到一个非取消的前继节点,返回false,acquireQueued方法的无限循环将递归调用该方法,直至规则1返回true,导致线程阻塞

规则3:如果前继节点状态为非SIGNAL、非CANCELLED,则设置前继的状态为SIGNAL,返回false后进入acquireQueued的无限循环,与规则2同

总体看来,shouldParkAfterFailedAcquire就是靠前继节点判断当前线程是否应该被阻塞,如果前继节点处于CANCELLED状态,则顺便删除这些节点重新构造队列。

至此,锁住线程的逻辑已经完成,下面讨论解锁的过程。

3. 解锁

请求锁不成功的线程会被挂起在acquireQueued方法的第12行,12行以后的代码必须等线程被解锁锁才能执行,假如被阻塞的线程得到解锁,则执行第13行,即设置interrupted = true,之后又进入无限循环。

从 无限循环的代码可以看出,并不是得到解锁的线程一定能获得锁,必须在第6行中调用tryAccquire重新竞争,因为锁是非公平的,有可能被新加入的线 程获得,从而导致刚被唤醒的线程再次被阻塞,这个细节充分体现了“非公平”的精髓。通过之后将要介绍的解锁机制会看到,第一个被解锁的线程就是Head, 因此p == head的判断基本都会成功。

至此可以看到,把tryAcquire方法延迟到子类中实现的做法非常精妙并具有极强的可扩展性,令人叹为观止!当然精妙的不是这个Templae设计模式,而是Doug Lea对锁结构的精心布局。

解锁代码相对简单,主要体现在AbstractQueuedSynchronizer.release和Sync.tryRelease方法中:

class AbstractQueuedSynchronizer

view plain

public final boolean release(int arg) {  

    if (tryRelease(arg)) {  

        Node h = head;  

        if (h != null && h.waitStatus != 0)  

            unparkSuccessor(h);  

        return true;  

    }  

    return false;  

}  

class Sync

view plain

protected final boolean tryRelease(int releases) {  

    int c = getState() - releases;  

    if (Thread.currentThread() != getExclusiveOwnerThread())  

        throw new IllegalMonitorStateException();  

    boolean free = false;  

    if (c == 0) {  

        free = true;  

        setExclusiveOwnerThread(null);  

    }  

    setState(c);  

    return free;  

}  

 

tryRelease与tryAcquire语义相同,把如何释放的逻辑延迟到子类中。tryRelease语义很明确:如果线程多次锁定,则进行多次释放,直至status==0则真正释放锁,所谓释放锁即设置status为0,因为无竞争所以没有使用CAS。

release的语义在于:如果可以释放锁,则唤醒队列第一个线程(Head),具体唤醒代码如下:

view plain

private void unparkSuccessor(Node node) {  

    /* 

     * If status is negative (i.e., possibly needing signal) try 

     * to clear in anticipation of signalling. It is OK if this 

     * fails or if status is changed by waiting thread. 

     */  

    int ws = node.waitStatus;  

    if (ws < 0)  

        compareAndSetWaitStatus(node, ws, 0);   

  

    /* 

     * Thread to unpark is held in successor, which is normally 

     * just the next node.  But if cancelled or apparently null, 

     * traverse backwards from tail to find the actual 

     * non-cancelled successor. 

     */  

    Node s = node.next;  

    if (s == null || s.waitStatus > 0) {  

        s = null;  

        for (Node t = tail; t != null && t != node; t = t.prev)  

            if (t.waitStatus <= 0)  

                s = t;  

    }  

    if (s != null)  

        LockSupport.unpark(s.thread);  

}  

 

这 段代码的意思在于找出第一个可以unpark的线程,一般说来head.next == head,Head就是第一个线程,但Head.next可能被取消或被置为null,因此比较稳妥的办法是从后往前找第一个可用线程。貌似回溯会导致性 能降低,其实这个发生的几率很小,所以不会有性能影响。之后便是通知系统内核继续该线程,在Linux下是通过pthread_mutex_unlock 完成。之后,被解锁的线程进入上面所说的重新竞争状态。

 

 

Lock VS Synchronized

AbstractQueuedSynchronizer通过构造一个基于阻塞的CLH队列容纳所有的阻塞线程,而对该队列的操作均通过Lock-Free(CAS)操作,但对已经获得锁的线程而言,ReentrantLock实现了偏向锁的功能。

synchronized 的底层也是一个基于CAS操作的等待队列,但JVM实现的更精细,把等待队列分为ContentionList和EntryList,目的是为了降低线程的出列速度;当然也实现了偏向锁,从数据结构来说二者设计没有本质区别。但synchronized还实现了自旋锁,并针对不同的系统和硬件体系进行了优 化,而Lock则完全依靠系统阻塞挂起等待线程。

当然Lock比synchronized更适合在应用层扩展,可以继承 AbstractQueuedSynchronizer定义各种实现,比如实现读写锁(ReadWriteLock),公平或不公平锁;同时,Lock对 应的Condition也比wait/notify要方便的多、灵活的多。

 

1、ReentrantLock 拥有Synchronized相同的并发性和内存语义,此外还多了 锁投票,定时锁等候和中断锁等候

     线程A和B都要获取对象O的锁定,假设A获取了对象O锁,B将等待A释放对O的锁定,

     如果使用 synchronized ,如果A不释放,B将一直等下去,不能被中断

     如果 使用ReentrantLock,如果A不释放,可以使B在等待了足够长的时间以后,中断等待,而干别的事情

    ReentrantLock获取锁定与三种方式:
    a)  lock(), 如果获取了锁立即返回,如果别的线程持有锁,当前线程则一直处于休眠状态,直到获取锁

    b) tryLock(), 如果获取了锁立即返回true,如果别的线程正持有锁,立即返回false;

    c)tryLock(long timeout,TimeUnit unit),   如果获取了锁定立即返回true,如果别的线程正持有锁,会等待参数给定的时间,在等待的过程中,如果获取了锁定,就返回true,如果等待超时,返回false;

    d) lockInterruptibly:如果获取了锁定立即返回,如果没有获取锁定,当前线程处于休眠状态,直到或者锁定,或者当前线程被别的线程中断

2、synchronized是在JVM层面上实现的,不但可以通过一些监控工具监控synchronized的锁定,而且在代码执行时出现异常,JVM会自动释放锁定,但是使用Lock则不行,lock是通过代码实现的,要保证锁定一定会被释放,就必须将unLock()放到finally{}中

 

  • 大小: 97.4 KB
  • 大小: 88.4 KB
  • 大小: 94.5 KB
  • 大小: 86.6 KB
  • 大小: 71.7 KB
分享到:
评论

相关推荐

    java的lock和synchronized的区别.docx

    Java 中的 Lock 和 Synchronized 的区别 Java 语言中有很多相似关键字或相似意义的字,但 lock 和 synchronized 是两个最容易混淆的关键字。它们都是锁的意思,都是为了线程安全性、应用合理性和运行效率的。下面...

    Synchronized 和 Lock 的区别和使用场景

    本文将深入探讨两种主要的锁机制:`synchronized`关键字和`Lock`接口,以及它们各自的特点、应用场景和使用方式。 一、Synchronized `synchronized`是Java中的一个内置关键字,用于提供线程安全。它的主要作用是...

    synchronized和LOCK的实现原理深入JVM锁机制比较好.docx

    了解 JVM 锁机制中的 synchronized 和 Lock 实现原理 在 Java 中,锁机制是数据同步的关键,存在两种锁机制:synchronized 和 Lock。了解这两种锁机制的实现原理对于理解 Java 并发编程非常重要。 synchronized 锁...

    简单了解synchronized和lock的区别

    了解synchronized和lock的区别 synchronized是Java语言中的一个关键字,用于线程同步,主要用于解决多线程之间的竞争问题。它可以将某个方法或代码块锁定,使得只有一个线程可以执行该方法或代码块,其他线程只能...

    Java编程synchronized与lock的区别【推荐】

    synchronized 和 Lock 是 Java 编程中两种常用的同步机制,用于实现线程安全的访问。两者都可以实现同步访问,但是它们有着不同的设计理念和使用场景。 synchronized 的缺陷 synchronized 是 Java 语言内置的...

    关于synchronized、Lock的深入理解

    关于`synchronized`与`Lock`的深入理解 `synchronized`是Java中的关键字,用于实现线程同步,确保同一时刻只有一个线程能执行特定代码段,防止数据不一致。它的主要缺陷在于: 1. **不可中断**:当一个线程持有锁...

    lock锁,lock锁和synchronized的对比

    lock锁,lock锁和synchronized的对比 # Lock锁 JDK5.0后Java提供了一种更加强大的线程同步机制。一种显式定义同步锁对象来实现锁,提供了对共享资源的独占访问,每次只能有一个线程对Lock对象加锁,线程开始访问...

    Synchronized与Lock

    "Synchronized与Lock"这个主题探讨了两种主要的同步机制:synchronized关键字和Lock接口(包括其实现类如ReentrantLock)。这两种机制都用于实现线程间的互斥访问,但它们在功能、灵活性和性能上有所差异。 首先,...

    并发编程之synchronized&Lock&AQS详解(1)1

    在多线程编程中,确保线程安全是至关重要的,特别是在Java中,有两种主要的同步机制:`synchronized`和`Lock`。本文将详细解释这两种机制以及它们的基础概念。 首先,我们需要理解什么是同步和临界资源。同步是指在...

    阿里、百度、搜狐 社招面试

    3. Java并发编程:面试官询问了关于Synchronized和Lock的区别,以及在Java内存模型上的理解和并发中的应用。这些都是并发编程中的重要知识点,对于Java开发者来说是必不可少的技能。 4. JVM和垃圾回收机制:涉及JVM...

    Lock接口与synchronized关键字

    ### Lock接口与synchronized关键字详解 #### 一、概述 在Java并发编程中,Lock接口与synchronized关键字都是实现同步的重要工具。它们虽然都用于控制多线程对共享资源的访问,但在使用方式、功能特性及灵活性方面...

    线程同步Synchronized,监视器monitor和锁lock的关系2---马克-to-win java视频

    线程同步Synchronized,监视器monitor和锁lock的关系2---马克-to-win java视频

    Java synchronized关键字和Lock接口实现原理

    Java synchronized关键字和Lock接口实现原理 Java 中的 synchronized 关键字和 Lock 接口是两种常用的线程同步机制,它们都可以用来解决并发问题。下面我们将详细介绍 synchronized 关键字和 Lock 接口的实现原理。...

    深入Synchronized和java.util.concurrent.locks.Lock的区别详解

    Synchronized和java.util.concurrent.locks.Lock都是Java中用于实现线程同步的关键字和接口,它们的主要目标是保证多线程环境下的数据一致性与并发安全。然而,两者在使用方式、控制粒度以及灵活性方面存在显著差异...

    java中synchronized用法

    在 Java 中,synchronized 关键字可以作用于 instance 变量、object reference(对象引用)、static 函数和 class literals(类名称字面常量)身上。 Synchronized 关键字的作用是取得对象的锁,而不是把一段代码或...

    synchronized 的理解

    在深入探讨`synchronized`的关键知识点之前,我们先来明确`synchronized`在Java中的核心作用:它是一种用于实现线程同步的机制,确保了共享资源在多线程环境下的正确访问和修改,避免了数据不一致性和竞态条件等问题...

    【Java面试题】lock与synchronized区别

    【Java面试题】lock与synchronized区别

    Synchronized关键字的用法

    通过`synchronized`关键字,开发者可以控制代码块或方法的并发访问,从而确保数据的一致性和程序的正确性。 #### 使用场景 1. **同步代码块**:可以通过`synchronized`关键字来声明同步代码块,即通过指定对象锁来...

    synchronized的几种示例

    本文将深入探讨`synchronized`的几种使用示例,包括方法加锁、代码块加锁(针对`this`和对象)以及静态方法加锁。 1. **方法加锁** 当在实例方法前使用`synchronized`关键字时,它会锁定当前对象的监视器,只有...

    synchronized并发讲解源码.zip

    除了锁住对象或类,`synchronized`还可以与`wait()`、`notify()`和`notifyAll()`方法结合使用,实现复杂的线程通信和同步。这些方法都是在`Object`类中定义的,只有在持有对象锁的情况下才能调用,否则会抛出`...

Global site tag (gtag.js) - Google Analytics