单线程你别阻塞,Redis时延问题分析及应对
Redis的事件循环在一个线程中处理,作为一个单线程程序,重要的是要保证事件处理的时延短,这样,事件循环中的后续任务才不会阻塞;
当redis的数据量达到一定级别后(比如20G),阻塞操作对性能的影响尤为严重;
下面我们总结下在redis中有哪些耗时的场景及应对方法;
耗时长的命令造成阻塞
keys、sort等命令
keys命令用于查找所有符合给定模式 pattern 的 key,时间复杂度为O(N), N 为数据库中 key 的数量。当数据库中的个数达到千万时,这个命令会造成读写线程阻塞数秒;
类似的命令有sunion sort等操作;
如果业务需求中一定要使用keys、sort等操作怎么办?
解决方案:
在架构设计中,有“分流”一招,说的是将处理快的请求和处理慢的请求分离来开,否则,慢的影响到了快的,让快的也快不起来;这在redis的设计中体现的非常明显,redis的纯内存操作,epoll非阻塞IO事件处理,这些快的放在一个线程中搞定,而持久化,AOF重写、Master-slave同步数据这些耗时的操作就单开一个进程来处理,不要慢的影响到快的;
同样,既然需要使用keys这些耗时的操作,那么我们就将它们剥离出去,比如单开一个redis slave结点,专门用于keys、sort等耗时的操作,这些查询一般不会是线上的实时业务,查询慢点就慢点,主要是能完成任务,而对于线上的耗时快的任务没有影响;
smembers命令
smembers命令用于获取集合全集,时间复杂度为O(N),N为集合中的数量;
如果一个集合中保存了千万量级的数据,一次取回也会造成事件处理线程的长时间阻塞;
解决方案:
和sort,keys等命令不一样,smembers可能是线上实时应用场景中使用频率非常高的一个命令,这里分流一招并不适合,我们更多的需要从设计层面来考虑;
在设计时,我们可以控制集合的数量,将集合数一般保持在500个以内;
比如原来使用一个键来存储一年的记录,数据量大,我们可以使用12个键来分别保存12个月的记录,或者365个键来保存每一天的记录,将集合的规模控制在可接受的范围;
如果不容易将集合划分为多个子集合,而坚持用一个大集合来存储,那么在取集合的时候可以考虑使用SRANDMEMBER key [count];随机返回集合中的指定数量,当然,如果要遍历集合中的所有元素,这个命令就不适合了;
save命令
save命令使用事件处理线程进行数据的持久化;当数据量大的时候,会造成线程长时间阻塞(我们的生产上,reids内存中1个G保存需要12s左右),整个redis被block;
save阻塞了事件处理的线程,我们甚至无法使用redis-cli查看当前的系统状态,造成“何时保存结束,目前保存了多少”这样的信息都无从得知;
解决方案:
我没有想到需要用到save命令的场景,任何时候需要持久化的时候使用bgsave都是合理的选择(当然,这个命令也会带来问题,后面聊到);
fork产生的阻塞
在redis需要执行耗时的操作时,会新建一个进程来做,比如数据持久化bgsave:
开启RDB持久化后,当达到持久化的阈值,redis会fork一个新的进程来做持久化,采用了操作系统的copy-on-wirte写时复制策略,子进程与父进程共享Page。如果父进程的Page(每页4K)有修改,父进程自己创建那个Page的副本,不会影响到子进程;
fork新进程时,虽然可共享的数据内容不需要复制,但会复制之前进程空间的内存页表,如果内存空间有40G(考虑每个页表条目消耗 8 个字节),那么页表大小就有80M,这个复制是需要时间的,如果使用虚拟机,特别是Xen虚拟服务器,耗时会更长;
在我们有的服务器结点上测试,35G的数据bgsave瞬间会阻塞200ms以上;
类似的,以下这些操作都有进程fork;
- Master向slave首次同步数据:当master结点收到slave结点来的syn同步请求,会生成一个新的进程,将内存数据dump到文件上,然后再同步到slave结点中;
- AOF日志重写:使用AOF持久化方式,做AOF文件重写操作会创建新的进程做重写;(重写并不会去读已有的文件,而是直接使用内存中的数据写成归档日志);
解决方案:
为了应对大内存页表复制时带来的影响,有些可用的措施:
-
控制每个redis实例的最大内存量;
不让fork带来的限制太多,可以从内存量上控制fork的时延;
一般建议不超过20G,可根据自己服务器的性能来确定(内存越大,持久化的时间越长,复制页表的时间越长,对事件循环的阻塞就延长)
新浪微博给的建议是不超过20G,而我们虚机上的测试,要想保证应用毛刺不明显,可能得在10G以下; -
使用大内存页,默认内存页使用4KB,这样,当使用40G的内存时,页表就有80M;而将每个内存页扩大到4M,页表就只有80K;这样复制页表几乎没有阻塞,同时也会提高快速页表缓冲TLB(translation lookaside buffer)的命中率;但大内存页也有问题,在写时复制时,只要一个页快中任何一个元素被修改,这个页块都需要复制一份(COW机制的粒度是页面),这样在写时复制期间,会耗用更多的内存空间;
-
使用物理机;
如果有的选,物理机当然是最佳方案,比上面都要省事;
当然,虚拟化实现也有多种,除了Xen系统外,现代的硬件大部分都可以快速的复制页表;
但公司的虚拟化一般是成套上线的,不会因为我们个别服务器的原因而变更,如果面对的只有Xen,只能想想如何用好它; -
杜绝新进程的产生,不使用持久化,不在主结点上提供查询;实现起来有以下方案:
1) 只用单机,不开持久化,不挂slave结点。这样最简单,不会有新进程的产生;但这样的方案只适合缓存;
如何来做这个方案的高可用?
要做高可用,可以在写redis的前端挂上一个消息队列,在消息队列中使用pub-sub来做分发,保证每个写操作至少落到2个结点上;因为所有结点的数据相同,只需要用一个结点做持久化,这个结点对外不提供查询;
2) master-slave:在主结点上开持久化,主结点不对外提供查询,查询由slave结点提供,从结点不提供持久化;这样,所有的fork耗时的操作都在主结点上,而查询请求由slave结点提供;
这个方案的问题是主结点坏了之后如何处理?
简单的实现方案是主不具有可替代性,坏了之后,redis集群对外就只能提供读,而无法更新;待主结点启动后,再继续更新操作;对于之前的更新操作,可以用MQ缓存起来,等主结点起来之后消化掉故障期间的写请求;
如果使用官方的Sentinel将从升级为主,整体实现就相对复杂了;需要更改可用从的ip配置,将其从可查询结点中剔除,让前端的查询负载不再落在新主上;然后,才能放开sentinel的切换操作,这个前后关系需要保证;
持久化造成的阻塞
执行持久化(AOF / RDB snapshot)对系统性能有较大影响,特别是服务器结点上还有其它读写磁盘的操作时(比如,应用服务和redis服务部署在相同结点上,应用服务实时记录进出报日志);应尽可能避免在IO已经繁重的结点上开Redis持久化;
子进程持久化时,子进程的write和主进程的fsync冲突造成阻塞
在开启了AOF持久化的结点上,当子进程执行AOF重写或者RDB持久化时,出现了Redis查询卡顿甚至长时间阻塞的问题, 此时, Redis无法提供任何读写操作;
原因分析:
Redis 服务设置了 appendfsync everysec, 主进程每秒钟便会调用 fsync(), 要求内核将数据”确实”写到存储硬件里. 但由于服务器正在进行大量IO操作, 导致主进程 fsync()/操作被阻塞, 最终导致 Redis 主进程阻塞.
redis.conf中是这么说的:
When the AOF fsync policy is set to always or everysec, and a background
saving process (a background save or AOF log background rewriting) is
performing a lot of I/O against the disk, in some Linux configurations
Redis may block too long on the fsync() call. Note that there is no fix for
this currently, as even performing fsync in a different thread will block
our synchronous write(2) call.
当执行AOF重写时会有大量IO,这在某些Linux配置下会造成主进程fsync阻塞;
解决方案:
设置 no-appendfsync-on-rewrite yes, 在子进程执行AOF重写时, 主进程不调用fsync()操作;注意, 即使进程不调用 fsync(), 系统内核也会根据自己的算法在适当的时机将数据写到硬盘(Linux 默认最长不超过 30 秒).
这个设置带来的问题是当出现故障时,最长可能丢失超过30秒的数据,而不再是1秒;
子进程AOF重写时,系统的sync造成主进程的write阻塞
我们来梳理下:
1) 起因:有大量IO操作write(2) 但未主动调用同步操作
2) 造成kernel buffer中有大量脏数据
3) 系统同步时,sync的同步时间过长
4) 造成redis的写aof日志write(2)操作阻塞;
5) 造成单线程的redis的下一个事件无法处理,整个redis阻塞(redis的事件处理是在一个线程中进行,其中写aof日志的write(2)是同步阻塞模式调用,与网络的非阻塞write(2)要区分开来)
产生1)的原因:这是redis2.6.12之前的问题,AOF rewrite时一直埋头的调用write(2),由系统自己去触发sync。
另外的原因:系统IO繁忙,比如有别的应用在写盘;
解决方案:
控制系统sync调用的时间;需要同步的数据多时,耗时就长;缩小这个耗时,控制每次同步的数据量;通过配置按比例(vm.dirty_background_ratio)或按值(vm.dirty_bytes)设置sync的调用阈值;(一般设置为32M同步一次)
2.6.12以后,AOF rewrite 32M时会主动调用fdatasync;
另外,Redis当发现当前正在写的文件有在执行fdatasync(2)时,就先不调用write(2),只存在cache里,免得被block。但如果已经超过两秒都还是这个样子,则会强行执行write(2),即使redis会被block住。
AOF重写完成后合并数据时造成的阻塞
在bgrewriteaof过程中,所有新来的写入请求依然会被写入旧的AOF文件,同时放到AOF buffer中,当rewrite完成后,会在主线程把这部分内容合并到临时文件中之后才rename成新的AOF文件,所以rewrite过程中会不断打印"Background AOF buffer size: 80 MB, Background AOF buffer size: 180 MB",要监控这部分的日志。这个合并的过程是阻塞的,如果产生了280MB的buffer,在100MB/s的传统硬盘上,Redis就要阻塞2.8秒;
解决方案:
将硬盘设置的足够大,将AOF重写的阈值调高,保证高峰期间不会触发重写操作;在闲时使用crontab 调用AOF重写命令;
参考:
http://www.oschina.net/translate/redis-latency-problems-troubleshooting
https://github.com/springside/springside4/wiki/redis
Posted by: 大CC | 10DEC,2015
博客:blog.me115.com [订阅]
Github:大CC
相关推荐
每个Redis命令发送后,需要等待服务器响应,这中间包含了网络延迟和服务器处理时间,这种往返时延会导致整体速度受限。尽管可以使用命令管道技术,让客户端连续发送多个命令而无需等待每个命令的回复,但在大规模...
在客户端的设计中,实现多线程可以充分利用系统资源,同时在处理数据时,采用异步模式可以避免单线程阻塞问题,显著提高客户端的性能和响应速度。 2. 双缓冲队列:双缓冲队列是一种提高I/O操作性能的技术,能够实现...
基于Maxwell设计的经典280W 4025RPM高效率科尔摩根12极39槽TBM无框力矩电机:生产与学习双重应用案例,基于Maxwell设计的经典280W高转速科尔摩根TBM无框力矩电机:7615系列案例解析与应用实践,基于maxwwell设计的经典280W,4025RPM 内转子 科尔摩根 12极39槽 TBM无框力矩电机,7615系列。 该案例可用于生产,或者学习用,(157) ,maxwell设计; 280W; 4025RPM内转子; 科尔摩根; 12极39槽TBM无框力矩电机; 7615系列; 生产/学习用。,基于Maxwell设计,高功率280W 12极39槽TBM无框力矩电机:生产与学习双用途案例
基于碳交易的微网优化模型的Matlab设计与实现策略分析,基于碳交易的微网优化模型的Matlab设计与实现探讨,考虑碳交易的微网优化模型matlab ,考虑碳交易; 微网优化模型; MATLAB;,基于Matlab的碳交易微网优化模型研究
二级2025模拟试题(答案版)
OpenCV是一个功能强大的计算机视觉库,它提供了多种工具和算法来处理图像和视频数据。在C++中,OpenCV可以用于实现基础的人脸识别功能,包括从摄像头、图片和视频中识别人脸,以及通过PCA(主成分分析)提取图像轮廓。以下是对本资源大体的介绍: 1. 从摄像头中识别人脸:通过使用OpenCV的Haar特征分类器,我们可以实时从摄像头捕获的视频流中检测人脸。这个过程涉及到将视频帧转换为灰度图像,然后使用预训练的Haar级联分类器来识别人脸区域。 2. 从视频中识别出所有人脸和人眼:在视频流中,除了检测人脸,我们还可以进一步识别人眼。这通常涉及到使用额外的Haar级联分类器来定位人眼区域,从而实现对人脸特征的更细致分析。 3. 从图片中检测出人脸:对于静态图片,OpenCV同样能够检测人脸。通过加载图片,转换为灰度图,然后应用Haar级联分类器,我们可以在图片中标记出人脸的位置。 4. PCA提取图像轮廓:PCA是一种统计方法,用于分析和解释数据中的模式。在图像处理中,PCA可以用来提取图像的主要轮廓特征,这对于人脸识别技术中的面部特征提取尤
麻雀搜索算法(SSA)自适应t分布改进版:卓越性能与优化代码注释,适合深度学习。,自适应t分布改进麻雀搜索算法(TSSA)——卓越的学习样本,优化效果出众,麻雀搜索算法(SSA)改进——采用自适应t分布改进麻雀位置(TSSA),优化后明显要优于基础SSA(代码基本每一步都有注释,代码质量极高,非常适合学习) ,TSSA(自适应t分布麻雀位置算法);注释详尽;高质量代码;适合学习;算法改进结果优异;TSSA相比基础SSA。,自适应T分布优化麻雀搜索算法:代码详解与学习首选(TSSA改进版)
锂电池主动均衡Simulink仿真研究:多种均衡策略与电路架构的深度探讨,锂电池主动均衡与多种均衡策略的Simulink仿真研究:buckboost拓扑及多层次电路分析,锂电池主动均衡simulink仿真 四节电池 基于buckboost(升降压)拓扑 (还有传统电感均衡+开关电容均衡+双向反激均衡+双层准谐振均衡+环形均衡器+cuk+耦合电感)被动均衡电阻式均衡 、分层架构式均衡以及分层式电路均衡,多层次电路,充放电。 ,核心关键词: 锂电池; 主动均衡; Simulink仿真; 四节电池; BuckBoost拓扑; 传统电感均衡; 开关电容均衡; 双向反激均衡; 双层准谐振均衡; 环形均衡器; CUK均衡; 耦合电感均衡; 被动均衡; 电阻式均衡; 分层架构式均衡; 多层次电路; 充放电。,锂电池均衡策略研究:Simulink仿真下的多拓扑主动与被动均衡技术
S7-1500和分布式外围系统ET200MP模块数据
内置式永磁同步电机无位置传感器模型:基于滑膜观测器和MTPA技术的深度探究,内置式永磁同步电机基于滑膜观测器和MTPA的无位置传感器模型研究,基于滑膜观测器和MTPA的内置式永磁同步电机无位置传感器模型 ,基于滑膜观测器;MTPA;内置式永磁同步电机;无位置传感器模型,基于滑膜观测与MTPA算法的永磁同步电机无位置传感器模型
centos7操作系统下安装docker,及docker常用命令、在docker中运行nginx示例,包括 1.设置yum的仓库 2.安装 Docker Engine-Community 3.docker使用 4.查看docker进程是否启动成功 5.docker常用命令及nginx示例 6.常见问题
给曙光服务器安装windows2012r2时候找不到磁盘,问厂家工程师要的raid卡驱动,内含主流大多数品牌raid卡驱动
数学建模相关主题资源2
西门子四轴卧式加工中心后处理系统:828D至840D支持,四轴联动制造解决方案,图档处理与试看程序一应俱全。,西门子四轴卧加后处理系统:支持828D至840D系统,四轴联动高精度制造解决方案,西门子四轴卧加后处理,支持828D~840D系统,支持四轴联动,可制制,看清楚联系,可提供图档处理试看程序 ,核心关键词:西门子四轴卧加后处理; 828D~840D系统支持; 四轴联动; 制程; 联系; 图档处理试看程序。,西门子四轴卧加后处理程序,支持多种系统与四轴联动
MATLAB下基于列约束生成法CCG的两阶段鲁棒优化问题求解入门指南:算法验证与经典文献参考,MATLAB下基于列约束生成法CCG的两阶段鲁棒优化问题求解入门指南:算法验证与文献参考,MATLAB代码:基于列约束生成法CCG的两阶段问题求解 关键词:两阶段鲁棒 列约束生成法 CCG算法 参考文档:《Solving two-stage robust optimization problems using a column-and-constraint generation method》 仿真平台:MATLAB YALMIP+CPLEX 主要内容:代码构建了两阶段鲁棒优化模型,并用文档中的相对简单的算例,进行CCG算法的验证,此篇文献是CCG算法或者列约束生成算法的入门级文献,其经典程度不言而喻,几乎每个搞CCG的两阶段鲁棒的人都绕不过此篇文献 ,两阶段鲁棒;列约束生成法;CCG算法;MATLAB;YALMIP+CPLEX;入门级文献。,MATLAB代码实现:基于两阶段鲁棒与列约束生成法CCG的算法验证研究
“生热研究的全面解读:探究参数已配置的Comsol模型中的18650圆柱锂电池表现”,探究已配置参数的COMSOL模型下的锂电池生热现象:18650圆柱锂电池模拟分析,出一个18650圆柱锂电池comsol模型 参数已配置,生热研究 ,出模型; 18650圆柱锂电池; comsol模型; 参数配置; 生热研究,构建18650电池的COMSOL热研究模型
移动端多端运行的知识付费管理系统源码,TP6+Layui+MySQL后端支持,功能丰富,涵盖直播、点播、管理全功能及礼物互动,基于UniApp跨平台开发的移动端知识付费管理系统源码:多端互通、全功能齐备、后端采用TP6与PHP及Layui前端,搭载MySQL数据库与直播、点播、管理、礼物等功能的强大整合。,知识付费管理系统源码,移动端uniApp开发,app h5 小程序一套代码多端运行,后端php(tp6)+layui+MySQL,功能齐全,直播,点播,管理,礼物等等功能应有尽有 ,知识付费;管理系统源码;移动端uniApp开发;多端运行;后端php(tp6);layui;MySQL;直播点播;管理功能;礼物功能,知识付费管理平台:全功能多端运行系统源码(PHP+Layui+MySQL)
基于Python+Django+MySQL的个性化图书推荐系统:协同过滤推荐,智能部署,用户定制功能,基于Python+Django+MySQL的个性化图书推荐系统:协同过滤推荐,智能部署,用户定制功能,Python+Django+Mysql个性化图书推荐系统 图书在线推荐系统 基于用户、项目、内容的协同过滤推荐算法。 帮远程安装部署 一、项目简介 1、开发工具和实现技术 Python3.8,Django4,mysql8,navicat数据库管理工具,html页面,javascript脚本,jquery脚本,bootstrap前端框架,layer弹窗组件、webuploader文件上传组件等。 2、项目功能 前台用户包含:注册、登录、注销、浏览图书、搜索图书、信息修改、密码修改、兴趣喜好标签、图书评分、图书收藏、图书评论、热点推荐、个性化推荐图书等功能; 后台管理员包含:用户管理、图书管理、图书类型管理、评分管理、收藏管理、评论管理、兴趣喜好标签管理、权限管理等。 个性化推荐功能: 无论是否登录,在前台首页展示热点推荐(根据图书被收藏数量降序推荐)。 登录用户,在前台首页展示个性化推荐
STM32企业级锅炉控制器源码分享:真实项目经验,带注释完整源码助你快速掌握实战经验,STM32企业级锅炉控制器源码:真实项目经验,完整注释,助力初学者快速上手,stm32真实企业项目源码 项目要求与网上搜的那些开发板的例程完全不在一个级别,也不是那些凑合性质的项目可以比拟的。 项目是企业级产品的要求开发的,能够让初学者了解真实的企业项目是怎么样的,增加工作经验 企业真实项目网上稀缺,完整源码带注释,适合没有参与工作或者刚学stm32的增加工作经验, 这是一个锅炉的控制器,有流程图和程序协议的介绍。 ,stm32源码;企业级项目;工作经验;锅炉控制器;流程图;程序协议,基于STM32的真实企业级锅炉控制器项目源码
整车性能目标书:涵盖燃油车、混动车及纯电动车型的十六个性能模块目标定义模板与集成开发指南,整车性能目标书:涵盖燃油车、混动车及纯电动车型的十六个性能模块目标定义模板与集成开发指南,整车性能目标书,汽车性能目标书,十六个性能模块目标定义模板,包含燃油车、混动车型及纯电动车型。 对于整车性能的集成开发具有较高的参考价值 ,整车性能目标书;汽车性能目标书;性能模块目标定义模板;燃油车;混动车型;纯电动车型;集成开发;参考价值,《汽车性能模块化目标书:燃油车、混动车及纯电动车的集成开发参考》