`

Java基础恶补——泛型和集合

    博客分类:
  • Java
 
阅读更多

[SCJP Sun Certified Programmer for Java 6 Study Guide (Exam 310-065)]  chapter7

 

一. Overriding hashCode() and equals()

1. equals(), hashCode(), and toString() are public.

2. Override toString() so that System.out.println() or other methods can see something useful, like your object's state.

3. 用 == 判断2个引用变量是否指向同1个对象;用 equals() 判断2个对象是否意义上相等。

4. If you don't override equals(), your objects won't be useful hashing keys.

5. If you don't override equals(), different objects can't be considered equal.

6. Strings and wrappers override equals() and make good hashing keys.

7. overriding equals() 时, 首先使用 instanceof 判断待比较对象的类型是否正确。

8. overriding equals() 时,比较对象的关键属性。

9. equals() 的规则:

1) 自反性: x.equals(x)==true

2) 对称性: 如果x.equals(y)==true, 则y.equals(x)==true

3) 传递性: 如果x.equals(y)==true, y.equals(z)==true 则x.equals(z)==true

4) 一致性: 任何时候调用 x.equals(y) ,其结果始终不变

5) 非空性: 对非空的引用变量x, x.equals(null)==false

10. 如果 x.equals(y)==true, 则 x.hashCode() == y.hashCode() == true.

11. If you override equals(), override hashCode().

12. HashMap, HashSet, Hashtable, LinkedHashMap, & LinkedHashSet use hashing.

13. An appropriate hashCode() override sticks to the hashCode() contract.

14. An efficient hashCode() override distributes keys evenly across its buckets.

15. An overridden equals() must be at least as precise as its hashCode() mate.

16. 如果2个对象 equal,则它们的 hashcodes 必须也 equal.

17. 所有实例对象的 hashCode() 返回相同的值是合法的(虽然这是非常低效的实践)。

18. hashCode() 的规则:

1) 一致性: 任何时候调用 hashCode() ,始终得到相同的integer值。

2) 如果2个对象通过equals() 被判定为是相同的,则调用其各自的 hashCode() 方法也应得到相同的integer值。

3) 如果2个对象通过equals() 被判定为非相同的,则调用其各自的 hashCode() 方法允许得到相同的integer值。

19. transient variables aren't appropriate for equals() and hashCode().

20. hashCode() 与 equals() 关系:

Condition Required Not Required (But Allowed)
x.equals(y) == true x.hashCode() ==
y.hashCode()
x.hashCode() ==
y.hashCode()
x.equals(y) == true
x.equals(y) == false No hashCode()
requirements
x.hashCode() !=
y.hashCode()
x.equals(y) == false

 

二. 集合

1. Common collection activities include adding objects, removing objects, verifying object inclusion, retrieving objects, and iterating.

2. Three meanings for "collection":

1) collection Represents the data structure in which objects are stored

2) Collection java.util interface from which Set and List extend

3) Collections A class that holds static collection utility methods

3. Four basic flavors of collections include Lists, Sets, Maps, Queues:

1) Lists of things Ordered, duplicates allowed, with an index.

2) Sets of things May or may not be ordered and/or sorted; duplicates not allowed.

3) Maps of things with keys May or may not be ordered and/or sorted;
duplicate keys are not allowed.

4) Queues of things to process Ordered by FIFO or by priority.

4. Four basic sub-flavors of collections Sorted, Unsorted, Ordered, Unordered.

1) Ordered Iterating through a collection in a specific, non-random order.

2) Sorted Iterating through a collection in a sorted order.

5. Sorting can be alphabetic, numeric, or programmer-defined.

6. 常用集合类:

Class Map Set List Ordered Sorted
HashMap Fastest updates (key/values); allows one null key, many
null values.
x

No No
Hashtable Like a slower HashMap (as with Vector, due to its synchronized
methods). No null values or null keys allowed.
x

No No
TreeMap A sorted map. x

Sorted By natural order or
custom comparison rules
LinkedHashMap Faster iterations; iterates by insertion order or last accessed;
allows one null key, many null values.
x

By insertion order
or last access order
No
HashSet Fast access, assures no duplicates, provides no ordering.
x
No No
TreeSet No duplicates; iterates in sorted order.
x
Sorted By natural order or
custom comparison rules
LinkedHashSet No duplicates; iterates by insertion order.
x
By insertion order No
ArrayList Fast iteration and fast random access.

x By index No
Vector It's like a slower ArrayList, but it has synchronized methods.

x By index No
LinkedList Good for adding elements to the ends, i.e., stacks and queues.

x By index No
PriorityQueue A to-do list ordered by the elements' priority.


Sorted By to-do order

 

三. 使用集合类

1. 集合类仅能存储Objects,但原子类型可以被autoboxed.

2. Iterate with the enhanced for, or with an Iterator via hasNext() & next().

3. hasNext() determines if more elements exist; the Iterator does NOT move.

4. next() returns the next element AND moves the Iterator forward.

5. To work correctly, a Map's keys must override equals() and hashCode().

6. Queues 用 offer() 增加元素, poll() 删除队首元素, peek() to look at the head of a queue.

7. As of Java 6 TreeSets and TreeMaps have new navigation methods like floor() and higher().

8. You can create/extend "backed" sub-copies of TreeSets and TreeMaps.

9. Important "Navigation" Related Methods:

Method Description
TreeSet.ceiling(e) Returns the lowest element >= e
TreeMap.ceilingKey(key) Returns the lowest key >= key
TreeSet.higher(e) Returns the lowest element > e
TreeMap.higherKey(key) Returns the lowest key > key
TreeSet.floor(e) Returns the highest element <= e
TreeMap.floorKey(key) Returns the highest key <= key
TreeSet.lower(e) Returns the highest element < e
TreeMap.lowerKey(key) Returns the highest key < key
TreeSet.pollFirst() Returns and removes the first entry
TreeMap.pollFirstEntry() Returns and removes the first key-value pair
TreeSet.pollLast() Returns and removes the last entry
TreeMap.pollLastEntry() Returns and removes the last key-value pair
TreeSet.descendingSet() Returns a NavigableSet in reverse order
TreeMap.descendingMap() Returns a NavigableMap in reverse order

 

10. Important "Backed Collection" Methods for TreeSet and TreeMap:

Method Description
headSet(e, b*) Returns a subset ending at element e and exclusive of e
headMap(k, b*) Returns a submap ending at key k and exclusive of key k
tailSet(e, b*) Returns a subset starting at and inclusive of element e
tailMap(k, b*) Returns a submap starting at and inclusive of key k
subSet(s, b*, e, b*) Returns a subset starting at element s and ending just before element e
subMap(s, b*, e, b*) Returns a submap starting at key s and ending just before key e

 

11. Key Methods in List, Set, and Map:

Key Interface Methods List Set Map Descriptions
boolean add(element)
boolean add(index, element)
X
X

X

 

Add an element. For Lists, optionally
add the element at an index point.
boolean contains(object)
boolean containsKey(object key)
boolean containsValue(object value)

X

 

 

X

 

X
X

Search a collection for an object (or,
optionally for Maps a key), return the
result as a boolean.
object get(index)
object get(key)

X

 

 

X

Get an object from a collection, via an
index or a key.
int indexOf(object) X Get the location of an object in a List.
Iterator iterator() X X Get an Iterator for a List or a Set.
Set keySet() X Return a Set containing a Map’s keys.
put(key, value) X Add a key/value pair to a Map.
remove(index)
remove(object)
remove(key)

X
X

 

X

 

 

X

Remove an element via an index, or
via the element’s value, or via a key.
int size() X X X Return the number of elements in a
collection.
Object[] toArray()
T[] toArray(T[])

X

 

X Return an array containing the
elements of the collection.

 

 

四. Sorting and Searching Arrays and Lists

1. Sorting can be in natural order, or via a Comparable or many Comparators.

2. Implement Comparable using compareTo(); provides only one sort order.

3. Create many Comparators to sort a class many ways; implement compare().

4. To be sorted and searched, a List's elements must be comparable.

5. To be searched, an array or List must first be sorted.

6. Comparable Comparator 对比:

java.lang.Comparable java.util.Comparator
int objOne.compareTo(objTwo) int compare(objOne, objTwo)
Returns
negative if objOne < objTwo
zero if objOne == objTwo
positive if objOne > objTwo
Same as Comparable
You must modify the class whose
instances you want to sort.
You build a class separate from the class whose instances you
want to sort.
Only one sort sequence can be created Many sort sequences can be created
Implemented frequently in the API by:
String, Wrapper classes, Date, Calendar...
Meant to be implemented to sort instances of third-party
classes.

 

五. 工具类: Collections and Arrays

1. Both of these java.util classes provide

1) A sort() method. Sort using a Comparator or sort using natural order.

2) A binarySearch() method. Search a pre-sorted array or List.

2. Arrays.asList() creates a List from an array and links them together.

3. Collections.reverse() reverses the order of elements in a List.

4. Collections.reverseOrder() returns a Comparator that sorts in reverse.

5. Lists and Sets have a toArray() method to create arrays.

6. Key Methods in Arrays and Collections:

Key Methods in java.util.Arrays Description
static List asList(T[]) Convert an array to a List (and bind them).
static int binarySearch(Object[], key)
static int binarySearch(primitive[], key)
Search a sorted array for a given value, return
an index or insertion point.
static int binarySearch(T[], key, Comparator) Search a Comparator-sorted array for a value.
static boolean equals(Object[], Object[])
static boolean equals(primitive[], primitive[])
Compare two arrays to determine if their
contents are equal.
public static void sort(Object[ ] )
public static void sort(primitive[ ] )
Sort the elements of an array by natural
order.
public static void sort(T[], Comparator) Sort the elements of an array using a
Comparator.
public static String toString(Object[])
public static String toString(primitive[])
Create a String containing the contents of
an array.
Key Methods in java.util.Collections Descriptions
Key Methods in java.util.Collections Descriptions
static int binarySearch(List, key)
static int binarySearch(List, key, Comparator)
Search a "sorted" List for a given value,
return an index or insertion point.
static void reverse(List) Reverse the order of elements in a List.
static Comparator reverseOrder()
static Comparator reverseOrder(Comparator)
Return a Comparator that sorts the reverse of
the collection’s current sort sequence.
static void sort(List)
static void sort(List, Comparator)
Sort a List either by natural order or by a
Comparator.

 

六. 泛型

1. Generics let you enforce compile-time type safety on Collections (or other classes and methods declared using generic type parameters).

2. An ArrayList<Animal> can accept references of type Dog, Cat, or any other subtype of Animal (subclass, or if Animal is an interface, implementation).

3. When using generic collections, a cast is not needed to get (declared type) elements out of the collection. With non-generic collections, a cast is required.

4. You can pass a generic collection into a method that takes a non-generic collection, but the results may be disastrous. The compiler can't stop the method from inserting the wrong type into the previously type safe collection.

5. If the compiler can recognize that non-type-safe code is potentially endangering something you originally declared as type-safe, you will get a compiler warning.

6. "Compiles without error" is not the same as "compiles without warnings." A compilation warning is not considered a compilation error or failure.

7. Generic type information does not exist at runtime—it is for compile-time safety only. Mixing generics with legacy code can create compiled code that may throw an exception at runtime.

8. Polymorphic assignments applies only to the base type, not the generic type parameter.

You can say
List<Animal> aList = new ArrayList<Animal>(); // yes
You can't say
List<Animal> aList = new ArrayList<Dog>(); // no

9. The polymorphic assignment rule applies everywhere an assignment can be made.

10. Wildcard syntax allows a generic method, accept subtypes (or supertypes) of the declared type of the method argument.

11. The wildcard keyword extends is used to mean either "extends" or "implements." So in <? extends Dog>, Dog can be a class or an interface.

12. When using a wildcard, List<? extends Dog>, the collection can be accessed but not modified.

13. When using a wildcard, List<?>, any generic type can be assigned to the reference, but for access only, no modifications.

14. List<Object> refers only to a List<Object>, while List<?> or List<? extends Object> can hold any type of object, but for access only.

15. Declaration conventions for generics use T for type and E for element:

public interface List<E> // API declaration for List
boolean add(E o) // List.add() declaration

16. The generics type identifier can be used in class, method, and variable declarations.

17. You can use more than one parameterized type in a declaration

18. You can declare a generic method using a type not defined in the class.

public <T> void makeList(T t) { }
is NOT using T as the return type. This method has a void return type, but
to use T within the method's argument you must declare the <T>, which
happens before the return type.

 

分享到:
评论

相关推荐

    受激拉曼散射计量【Stimulated-Raman-Scattering Metrology】 附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    MMC整流器技术解析:基于Matlab的双闭环控制策略与环流抑制性能研究,Matlab下的MMC整流器技术文档:18个子模块,双闭环控制稳定直流电压,环流抑制与最近电平逼近调制,优化桥臂电流波形,高效

    MMC整流器技术解析:基于Matlab的双闭环控制策略与环流抑制性能研究,Matlab下的MMC整流器技术文档:18个子模块,双闭环控制稳定直流电压,环流抑制与最近电平逼近调制,优化桥臂电流波形,高效并网运行。,MMC整流器(Matlab),技术文档 1.MMC工作在整流侧,子模块个数N=18,直流侧电压Udc=25.2kV,交流侧电压6.6kV 2.控制器采用双闭环控制,外环控制直流电压,采用PI调节器,电流内环采用PI+前馈解耦; 3.环流抑制采用PI控制,能够抑制环流二倍频分量; 4.采用最近电平逼近调制(NLM), 5.均压排序:电容电压排序采用冒泡排序,判断桥臂电流方向确定投入切除; 结果: 1.输出的直流电压能够稳定在25.2kV; 2.有功功率,无功功率稳态时波形稳定,有功功率为3.2MW,无功稳定在0Var; 3.网侧电压电流波形均为对称的三相电压和三相电流波形,网侧电流THD=1.47%<2%,符合并网要求; 4.环流抑制后桥臂电流的波形得到改善,桥臂电流THD由9.57%降至1.93%,环流波形也可以看到得到抑制; 5.电容电压能够稳定变化 ,工作点关键词:MMC

    Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基

    Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构的Simulink建模与MPPT最大功率点追踪:基于功率反馈的扰动观察法调整电压方向研究,Boost二级升压光伏并网结构,Simulink建模,MPPT最大功率点追踪,扰动观察法采用功率反馈方式,若ΔP>0,说明电压调整的方向正确,可以继续按原方向进行“干扰”;若ΔP<0,说明电压调整的方向错误,需要对“干扰”的方向进行改变。 ,Boost升压;光伏并网结构;Simulink建模;MPPT最大功率点追踪;扰动观察法;功率反馈;电压调整方向。,光伏并网结构中Boost升压MPPT控制策略的Simulink建模与功率反馈扰动观察法

    STM32F103C8T6 USB寄存器开发详解(12)-键盘设备

    STM32F103C8T6 USB寄存器开发详解(12)-键盘设备

    2011-2020广东21市科技活动人员数

    科技活动人员数专指直接从事科技活动以及专门从事科技活动管理和为科技活动提供直接服务的人员数量

    Matlab Simulink仿真探究Flyback反激式开关电源性能表现与优化策略,Matlab Simulink仿真探究Flyback反激式开关电源的工作机制,Matlab Simulimk仿真

    Matlab Simulink仿真探究Flyback反激式开关电源性能表现与优化策略,Matlab Simulink仿真探究Flyback反激式开关电源的工作机制,Matlab Simulimk仿真,Flyback反激式开关电源仿真 ,Matlab; Simulink仿真; Flyback反激式; 开关电源仿真,Matlab Simulink在Flyback反激式开关电源仿真中的应用

    基于Comsol的埋地电缆电磁加热计算模型:深度解析温度场与电磁场分布学习资料与服务,COMSOL埋地电缆电磁加热计算模型:温度场与电磁场分布的解析与学习资源,comsol 埋地电缆电磁加热计算模型

    基于Comsol的埋地电缆电磁加热计算模型:深度解析温度场与电磁场分布学习资料与服务,COMSOL埋地电缆电磁加热计算模型:温度场与电磁场分布的解析与学习资源,comsol 埋地电缆电磁加热计算模型,可以得到埋地电缆温度场及电磁场分布,提供学习资料和服务, ,comsol;埋地电缆电磁加热计算模型;温度场分布;电磁场分布;学习资料;服务,Comsol埋地电缆电磁加热模型:温度场与电磁场分布学习资料及服务

    ibus-table-chinese-yong-1.4.6-3.el7.x64-86.rpm.tar.gz

    1、文件内容:ibus-table-chinese-yong-1.4.6-3.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/ibus-table-chinese-yong-1.4.6-3.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊

    基于51单片机protues仿真的汽车智能灯光控制系统设计(仿真图、源代码)

    基于51单片机protues仿真的汽车智能灯光控制系统设计(仿真图、源代码) 一、设计项目 根据本次设计的要求,设计出一款基于51单片机的自动切换远近光灯的设计。 技术条件与说明: 1. 设计硬件部分,中央处理器采用了STC89C51RC单片机; 2. 使用两个灯珠代表远近光灯,感光部分采用了光敏电阻,因为光敏电阻输出的是电压模拟信号,单片机不能直接处理模拟信号,所以经过ADC0832进行转化成数字信号; 3. 显示部分采用了LCD1602液晶,还增加按键部分电路,可以选择手自动切换远近光灯; 4. 用超声模块进行检测距离;

    altermanager的企业微信告警服务

    altermanager的企业微信告警服务

    MyAgent测试版本在线下载

    MyAgent测试版本在线下载

    Comsol技术:可调BIC应用的二氧化钒VO2材料探索,Comsol模拟二氧化钒VO2的可调BIC特性研究,Comsol二氧化钒VO2可调BIC ,Comsol; 二氧化钒VO2; 可调BIC

    Comsol技术:可调BIC应用的二氧化钒VO2材料探索,Comsol模拟二氧化钒VO2的可调BIC特性研究,Comsol二氧化钒VO2可调BIC。 ,Comsol; 二氧化钒VO2; 可调BIC,Comsol二氧化钒VO2材料:可调BIC技术的关键应用

    C++学生成绩管理系统源码.zip

    C++学生成绩管理系统源码

    基于Matlab与Cplex的激励型需求响应模式:负荷转移与电价响应的差异化目标函数解析,基于Matlab与CPLEX的激励型需求响应负荷转移策略探索,激励型需求响应 matlab +cplex 激励

    基于Matlab与Cplex的激励型需求响应模式:负荷转移与电价响应的差异化目标函数解析,基于Matlab与CPLEX的激励型需求响应负荷转移策略探索,激励型需求响应 matlab +cplex 激励型需求响应采用激励型需求响应方式对负荷进行转移,和电价响应模式不同,具体的目标函数如下 ,激励型需求响应; matlab + cplex; 负荷转移; 目标函数。,Matlab与Cplex结合的激励型需求响应模型及其负荷转移策略

    scratch介绍(scratch说明).zip

    scratch介绍(scratch说明).zip

    深度学习模型的发展历程及其关键技术在人工智能领域的应用

    内容概要:本文全面介绍了深度学习模型的概念、工作机制和发展历程,详细探讨了神经网络的构建和训练过程,包括反向传播算法和梯度下降方法。文中还列举了深度学习在图像识别、自然语言处理、医疗和金融等多个领域的应用实例,并讨论了当前面临的挑战,如数据依赖、计算资源需求、可解释性和对抗攻击等问题。最后,文章展望了未来的发展趋势,如与量子计算和区块链的融合,以及在更多领域的应用前景。 适合人群:对该领域有兴趣的技术人员、研究人员和学者,尤其适合那些希望深入了解深度学习原理和技术细节的读者。 使用场景及目标:①理解深度学习模型的基本原理和结构;②了解深度学习模型的具体应用案例;③掌握应对当前技术挑战的方向。 阅读建议:文章内容详尽丰富,读者应在阅读过程中注意理解各个关键技术的概念和原理,尤其是神经网络的构成及训练过程。同时也建议对比不同模型的特点及其在具体应用中的表现。

    day02供应链管理系统-补充.zip

    该文档提供了一个关于供应链管理系统开发的详细指南,重点介绍了项目安排、技术实现和框架搭建的相关内容。 文档分为以下几个关键部分: 项目安排:主要步骤包括搭建框架(1天),基础数据模块和权限管理(4天),以及应收应付和销售管理(5天)。 供应链概念:供应链系统的核心流程是通过采购商品放入仓库,并在销售时从仓库提取商品,涉及三个主要订单:采购订单、销售订单和调拨订单。 大数据的应用:介绍了数据挖掘、ETL(数据抽取)和BI(商业智能)在供应链管理中的应用。 技术实现:讲述了DAO(数据访问对象)的重用、服务层的重用、以及前端JS的继承机制、jQuery插件开发等技术细节。 系统框架搭建:包括Maven环境的配置、Web工程的创建、持久化类和映射文件的编写,以及Spring配置文件的实现。 DAO的需求和功能:供应链管理系统的各个模块都涉及分页查询、条件查询、删除、增加、修改操作等需求。 泛型的应用:通过示例说明了在Java语言中如何使用泛型来实现模块化和可扩展性。 文档非常技术导向,适合开发人员参考,用于构建供应链管理系统的架构和功能模块。

    清华大学104页《Deepseek:从入门到精通》

    这份长达104页的手册由清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室的余梦珑博士后及其团队精心编撰,内容详尽,覆盖了从基础概念、技术原理到实战案例的全方位指导。它不仅适合初学者快速了解DeepSeek的基本操作,也为有经验的用户提供了高级技巧和优化策略。

    MXTU MAX仿毒舌自适应主题源码 苹果CMSv10模板.zip

    主题说明: 1、将mxtheme目录放置根目录 | 将mxpro目录放置template文件夹中 2、苹果cms后台-系统-网站参数配置-网站模板-选择mxpro 模板目录填写html 3、网站模板选择好之后一定要先访问前台,然后再进入后台设置 4、主题后台地址: MXTU MAX图图主题,/admin.php/admin/mxpro/mxproset admin.php改成你登录后台的xxx.php 5、首页幻灯片设置视频推荐9,自行后台设置 6、追剧周表在视频数据中,节目周期添加周一至周日自行添加,格式:一,二,三,四,五,六,日

    基于matlab平台的数字信号处理GUI设计.zip

    运行GUI版本,可二开

Global site tag (gtag.js) - Google Analytics