`
coeshare
  • 浏览: 302 次
最近访客 更多访客>>
文章分类
社区版块
存档分类
最新评论

mongoIntro

阅读更多
mongodb由C++写就,其名字来自humongous这个单词的中间部分,从名字可见其野心所在就是海量数据的处理。关于它的一个最简洁描述为:scalable, high-performance, open source, schema-free, document-oriented database。MongoDB的主要目标是在键/值存储方式(提供了高性能和高度伸缩性)以及传统的RDBMS系统(丰富的功能)架起一座桥梁,集两者的优势于一身。

安装及使用:

首先在Ubuntu上安装MongoDB。

下载MongoDB, 现在最新的生产版本1.7.0

1. 解压文件.

$ tar -xvf mongodb-linux-i686-1.4.3.tgz

2. 为MongoDB创建数据目录,默认情况下它将数据存储在/data/db

$ sudo mkdir -p /data/db/

$ sudo chown `id -u` /data/db

3. 启动MongoDB服务.

$ cd mongodb-linux-i686-1.4.3/bin

$ ./mongod

4. 打开另一个终端,并确保你在MongoDB的bin目录,输入如下命令.

$ ./mongo
一些概念

一个mongod服务可以有建立多个数据库,每个数据库可以有多张表,这里的表名叫collection,每个collection可以存放多个文档(document),每个文档都以BSON(binary json)的形式存放于硬盘中,因此可以存储比较复杂的数据类型。它是以单文档为单位存储的,你可以任意给一个或一批文档新增或删除字段,而不会对其它文档造成影响,这就是所谓的schema-free,这也是文档型数据库最主要的优点。跟一般的key-value数据库不一样的是,它的value中存储了结构信息,所以你又可以像关系型数据库那样对某些域进行读写、统计等操作。Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。Mongo还可以解决海量数据的查询效率,根据官方文档,当数据量达到50GB以上数据时,Mongo数据库访问速度是MySQL10 倍以上。

BSON

BSON是Binary JSON 的简称,是一个JSON文档对象的二进制编码格式。BSON同JSON一样支持往其它文档对象和数组中再插入文档对象和数组,同时扩展了JSON的数据类型。如:BSON有Date类型和BinDate类型。

BSON被比作二进制的交换格式,如同Protocol Buffers,但BSON比它更“schema-less”,非常好的灵活性但空间占用稍微大一点。

BSON有以下三个特点:

1. 轻量级

2. 跨平台

3. 效率高

命名空间

MongoDB存储BSON对象到collections,这一系列的数据库名和collection名被称为一个命名空间。如同:java.util.List;用来管理数据库中的数据。
索引

mongodb可以对某个字段建立索引,可以建立组合索引、唯一索引,也可以删除索引,建立索引就意味着增加空间开销。默认情况下每个表都会有一个唯一索引:_id,如果插入数据时没有指定_id,服务会自动生成一个_id,为了充分利用已有索引,减少空间开销,最好是自己指定一个unique的key为_id,通常用对象的ID比较合适,比如商品的ID。

shell操作数据库:

1. 超级用户相关:

1. #进入数据库admin

use admin

2. #增加或修改用户密码

db.addUser(‘name’,'pwd’)

3. #查看用户列表

db.system.users.find()

4. #用户认证

db.auth(‘name’,'pwd’)

5. #删除用户

db.removeUser(‘name’)

6. #查看所有用户

show users

7. #查看所有数据库

show dbs

8. #查看所有的collection

show collections

9. #查看各collection的状态

db.printCollectionStats()

10. #查看主从复制状态

db.printReplicationInfo()

11. #修复数据库

db.repairDatabase()

12. #设置记录profiling,0=off 1=slow 2=all

db.setProfilingLevel(1)

13. #查看profiling

show profile

14. #拷贝数据库

db.copyDatabase(‘mail_addr’,'mail_addr_tmp’)

15. #删除collection

db.mail_addr.drop()

16. #删除当前的数据库

db.dropDatabase()

2. 增删改

1. #存储嵌套的对象

db.foo.save({‘name’:'ysz’,'address’:{‘city’:'beijing’,'post’:100096},’phone’:[138,139]})

2. #存储数组对象

db.user_addr.save({‘Uid’:'yushunzhi@sohu.com’,'Al’:['test-1@sohu.com','test-2@sohu.com']})

3. #根据query条件修改,如果不存在则插入,允许修改多条记录

db.foo.update({‘yy’:5},{‘$set’:{‘xx’:2}},upsert=true,multi=true)

4. #删除yy=5的记录

db.foo.remove({‘yy’:5})

5. #删除所有的记录

db.foo.remove()

3. 索引

1. #增加索引:1(ascending),-1(descending)

2. db.foo.ensureIndex({firstname: 1, lastname: 1}, {unique: true});

3. #索引子对象

4. db.user_addr.ensureIndex({‘Al.Em’: 1})

5. #查看索引信息

6. db.foo.getIndexes()

7. db.foo.getIndexKeys()

8. #根据索引名删除索引

9. db.user_addr.dropIndex(‘Al.Em_1′)

4. 查询

1. #查找所有

2. db.foo.find()

3. #查找一条记录

4. db.foo.findOne()

5. #根据条件检索10条记录

6. db.foo.find({‘msg’:'Hello 1′}).limit(10)

7. #sort排序

8. db.deliver_status.find({‘From’:'ixigua@sina.com’}).sort({‘Dt’,-1})

9. db.deliver_status.find().sort({‘Ct’:-1}).limit(1)

10. #count操作

11. db.user_addr.count()

12. #distinct操作,查询指定列,去重复

13. db.foo.distinct(‘msg’)

14. #”>=”操作

15. db.foo.find({“timestamp”: {“$gte” : 2}})

16. #子对象的查找

17. db.foo.find({‘address.city’:'beijing’})

5. 管理

1. #查看collection数据的大小

2. db.deliver_status.dataSize()

3. #查看colleciont状态

4. db.deliver_status.stats()

5. #查询所有索引的大小

6. db.deliver_status.totalIndexSize()

5. advanced queries:高级查询

条件操作符
$gt : >
$lt : <
$gte: >=
$lte: <=
$ne : !=、<>
$in : in
$nin: not in
$all: all
$not: 反匹配(1.3.3及以上版本)

查询 name <> “bruce” and age >= 18 的数据
db.users.find({name: {$ne: “bruce”}, age: {$gte: 18}});

查询 creation_date > ‘2010-01-01′ and creation_date <= '2010-12-31' 的数据
db.users.find({creation_date:{$gt:new Date(2010,0,1), $lte:new Date(2010,11,31)});

查询 age in (20,22,24,26) 的数据
db.users.find({age: {$in: [20,22,24,26]}});

查询 age取模10等于0 的数据
db.users.find('this.age % 10 == 0');
或者
db.users.find({age : {$mod : [10, 0]}});

匹配所有
db.users.find({favorite_number : {$all : [6, 8]}});
可以查询出{name: 'David', age: 26, favorite_number: [ 6, 8, 9 ] }
可以不查询出{name: 'David', age: 26, favorite_number: [ 6, 7, 9 ] }

查询不匹配name=B*带头的记录
db.users.find({name: {$not: /^B.*/}});
查询 age取模10不等于0 的数据
db.users.find({age : {$not: {$mod : [10, 0]}}});

#返回部分字段
选择返回age和_id字段(_id字段总是会被返回)
db.users.find({}, {age:1});
db.users.find({}, {age:3});
db.users.find({}, {age:true});
db.users.find({ name : "bruce" }, {age:1});
0为false, 非0为true

选择返回age、address和_id字段
db.users.find({ name : "bruce" }, {age:1, address:1});

排除返回age、address和_id字段
db.users.find({}, {age:0, address:false});
db.users.find({ name : "bruce" }, {age:0, address:false});

数组元素个数判断
对于{name: 'David', age: 26, favorite_number: [ 6, 7, 9 ] }记录
匹配db.users.find({favorite_number: {$size: 3}});
不匹配db.users.find({favorite_number: {$size: 2}});

$exists判断字段是否存在
查询所有存在name字段的记录
db.users.find({name: {$exists: true}});
查询所有不存在phone字段的记录
db.users.find({phone: {$exists: false}});

$type判断字段类型
查询所有name字段是字符类型的
db.users.find({name: {$type: 2}});
查询所有age字段是整型的
db.users.find({age: {$type: 16}});

对于字符字段,可以使用正则表达式
查询以字母b或者B带头的所有记录
db.users.find({name: /^b.*/i});

$elemMatch(1.3.1及以上版本)
为数组的字段中匹配其中某个元素

Javascript查询和$where查询
查询 age > 18 的记录,以下查询都一样
db.users.find({age: {$gt: 18}});
db.users.find({$where: “this.age > 18″});
db.users.find(“this.age > 18″);
f = function() {return this.age > 18} db.users.find(f);

排序sort()
以年龄升序asc
db.users.find().sort({age: 1});
以年龄降序desc
db.users.find().sort({age: -1});

限制返回记录数量limit()
返回5条记录
db.users.find().limit(5);
返回3条记录并打印信息
db.users.find().limit(3).forEach(function(user) {print(‘my age is ‘ + user.age)});
结果
my age is 18
my age is 19
my age is 20

限制返回记录的开始点skip()
从第3条记录开始,返回5条记录(limit 3, 5)
db.users.find().skip(3).limit(5);

查询记录条数count()
db.users.find().count();
db.users.find({age:18}).count();
以下返回的不是5,而是user表中所有的记录数量
db.users.find().skip(10).limit(5).count();
如果要返回限制之后的记录数量,要使用count(true)或者count(非0)
db.users.find().skip(10).limit(5).count(true);

分组group()
假设test表只有以下一条数据
{ domain: “www.mongodb.org”
, invoked_at: {d:”2009-11-03″, t:”17:14:05″}
, response_time: 0.05
, http_action: “GET /display/DOCS/Aggregation”
}
使用group统计test表11月份的数据count:count(*)、total_time:sum(response_time)、avg_time:total_time/count;
db.test.group(
{ cond: {“invoked_at.d”: {$gt: “2009-11″, $lt: “2009-12″}}
, key: {http_action: true}
, initial: {count: 0, total_time:0}
, reduce: function(doc, out){ out.count++; out.total_time+=doc.response_time }
, finalize: function(out){ out.avg_time = out.total_time / out.count }
} );

[
{
"http_action" : "GET /display/DOCS/Aggregation",
"count" : 1,
"total_time" : 0.05,
"avg_time" : 0.05
}
]

Java 应用示例

要使用Java操作MongoDB的话,要到官方网站下载一个驱动包,把包导入后,可以尝试来操作了(记得一定要开着服务器)

首先介绍一下比较常用的几个类

Mongo:连接服务器,执行一些数据库操作的选项,如新建立一个数据库等

DB:对应一个数据库,可以用来建立集合等操作

DBCollection:对应一个集合(类似表),可能是我们用得最多的,可以添加删除记录等

DBObjec:接口和BasicDBObject对象:表示一个具体的记录,BasicDBObject实现了DBObject,因为是key-value的数据结构,所以用起来其实和HashMap是基本一致的

DBCursor:用来遍历取得的数据,实现了Iterable和Iterator

接下来实际的操作一下,代码如下:

import java.net.UnknownHostException;

import java.util.List;

import java.util.Set;

import com.mongodb.BasicDBObject;

import com.mongodb.DB;

import com.mongodb.DBCollection;

import com.mongodb.DBCursor;

import com.mongodb.DBObject;

import com.mongodb.Mongo;

import com.mongodb.MongoException;

public class MongoDbTest {

public static void main(String[] args) throws UnknownHostException, MongoException {

//Mongo m = new Mongo();

//Mongo m = new Mongo(“localhost”);

//获得数据库服务

Mongo m = new Mongo(“localhost”, 27017);

//得到数据库mytest

DB db = m.getDB(“mytest”);

//得到mytest数据库下所有表名

Set colls = db.getCollectionNames();

for (String s : colls) {

System.out.println(s);

}

//得到testCollection表

DBCollection coll = db.getCollection(“testCollection”);

//new 一个BasicDBObject对象doc

BasicDBObject doc = new BasicDBObject();

//赋值

doc.put(“name”, “MongoDB”);

doc.put(“type”, “database”);

doc.put(“count”, 1);

//又new 一个BasicDBObject对象info

BasicDBObject info = new BasicDBObject();

info.put(“x”, 203);

info.put(“y”, 102);

//把info放入doc

doc.put(“info”, info);

//向testCollection表中插入一条数据

coll.insert(doc);

//查询一条数据

DBObject myDoc = coll.findOne();

System.out.println(myDoc);

//循环插入100条数据到testCollection

for (int i=0; i < 100; i++) {

coll.insert(new BasicDBObject().append(“i”, i));

}

//Counting Documents in A Collection

System.out.println(coll.getCount());

//Using a Cursor to Get All the Documents

DBCursor cur = coll.find();

while(cur.hasNext()) {
分享到:
评论

相关推荐

    Java系统源码+科研工作量管理系统

    Java系统源码+科研工作量管理系统 内容概要: 本资源包含了完整的Java前后端源码及说明文档,适用于想要快速搭建并部署Java Web应用程序的开发者、学习者。 技术栈: 后端:Java生态系统,包含Spring Boot、Shiro、MyBatis等,数据库使用Mysql 前端:Vue、Bootstrap、Jquery等 适用场景示例: 1、毕业生希望快速启动一个新的Java Web应用程序。 2、团队寻找一个稳定的模板来加速产品开发周期。 3、教育机构或个人学习者用于教学目的或自学练习。 4、创业公司需要一个可以立即投入使用的MVP(最小可行产品)。

    毕业设计-智能优化之粒子群模型Python代码.rar

    1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、本项目仅用作交流学习参考,请切勿用于商业用途。

    Matlab实现SMA-KELM黏菌优化算法优化核极限学习机分类预测(含完整的程序,GUI设计和代码详解)

    内容概要:本文介绍了如何在MATLAB中实现结合黏菌优化算法(SMA)和核极限学习机(KELM)的分类预测模型。SMA优化KELM的超参数,提高模型的训练效率和预测精度,特别适用于处理复杂、高维数据集。文档详细阐述了项目背景、目标、挑战、模型架构、代码实现、结果展示、GUI设计、部署与应用等多个方面。 适合人群:具备一定MATLAB编程基础,对机器学习特别是优化算法和核方法感兴趣的科研人员和工程师。 使用场景及目标:①金融预测:股票价格、外汇市场等时间序列预测;②医疗诊断:疾病预测与辅助诊断;③工业故障检测:设备故障预警;④气象预测:天气变化预测;⑤市场营销:客户行为分析与预测。通过结合SMA和KELM,提升模型在高维数据上的分类和预测性能。 其他说明:文档不仅提供了详细的理论和方法介绍,还包含了完整的程序代码和GUI设计,有助于读者快速上手并应用到实际问题中。此外,文档还讨论了模型的部署、安全性和未来改进方向。

    Java jdbc for sqlserver2000 驱动包: msbase.jar;mssqlserver.jar;msutil.jar

    解压到项目下的LIB目录,在IDEA上右键,选添加为库即可。 连接代码如下: import java.sql.Connection; import java.sql.DriverManager; import java.sql.SQLException; public class SQL { public static void main(String[] args) { String driverName = "com.microsoft.jdbc.sqlserver.SQLServerDriver"; String connectionUrl = "jdbc:microsoft:sqlserver://localhost:1433;DatabaseName=数据库名"; String username = "sa"; String password = "口令"; try { Class.forNam……

    毕业设计-神经网络图像分类代码(可直接运行).rar

    1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、本项目仅用作交流学习参考,请切勿用于商业用途。

    水母检测4-YOLO(v5至v9)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar

    水母检测4-YOLO(v5至v9)、COCO、CreateML、Paligemma、TFRecord、VOC数据集合集.rar水族馆-V2释放 ============================= *与您的团队在计算机视觉项目上合作 *收集和组织图像 *了解非结构化图像数据 *注释,创建数据集 *导出,训练和部署计算机视觉模型 *使用主动学习随着时间的推移改善数据集 它包括638张图像。 水族馆以可可格式注释。 将以下预处理应用于每个图像: 没有应用图像增强技术。

    电缆损坏检测8-YOLO(v5至v9)、COCO、CreateML、Darknet、Paligemma、TFRecord、VOC数据集合集.rar

    电缆损坏检测8-YOLO(v5至v9)、COCO、CreateML、Darknet、Paligemma、TFRecord、VOC数据集合集.rar电缆损坏-V2释放 ============================= *与您的团队在计算机视觉项目上合作 *收集和组织图像 *了解非结构化图像数据 *注释,创建数据集 *导出,训练和部署计算机视觉模型 *使用主动学习随着时间的推移改善数据集 它包括1318张图像。 电缆破坏以可可格式注释。 将以下预处理应用于每个图像: 没有应用图像增强技术。

    基于java的讯友网络相册.zip

    项目包含前后台完整源码。 项目都经过严格调试,确保可以运行! 具体项目介绍可查看博主文章或私聊获取 助力学习实践,提升编程技能,快来获取这份宝贵的资源吧!

    2024税务稽查典型案例分析(PPT格式,可编辑)

    2024年以来,税务稽查主要针对虚开骗税、骗取税收优惠、隐匿收入、虚增成本等行为,开展重点行业重点领域重点行为税收监管。本课程从案例出发,梳理稽查重点关注的问题行为,分析常见涉税疑点,供财务人员实务参考。

    content_1734090857469.docx

    content_1734090857469.docx

    阵列信号处理-MUSIC算法-幅相误差校正-协方差矩阵校正法-信噪比变化

    阵列信号处理,MUSIC算法中,使用基于协方差矩阵的幅相误差校正法实现幅相误差校正

    linux的概要介绍与分析

    以下是一个关于Linux系统管理与自动化脚本项目的资源描述及源码概要: 资源描述 本项目专注于Linux系统管理与自动化脚本开发,旨在通过一系列脚本提升系统运维效率。在资源准备阶段,我们深入研究了Linux系统架构、Shell脚本编程、以及常用系统管理命令。参考了《Linux命令行与Shell脚本编程大全》等经典书籍,以及Linux官方文档和在线社区,如Stack Overflow和Linux Academy,这些资源为我们提供了丰富的知识和实战案例。 项目实施过程中,我们利用Bash Shell作为主要脚本语言,结合sed、awk、grep等文本处理工具,以及cron作业调度器,实现了系统监控、日志分析、自动备份、用户管理等一系列自动化任务。同时,通过SSH和rsync等工具,实现了远程服务器管理和文件同步,极大地提高了运维的灵活性和效率。 项目源码概要 项目源码包含多个Shell脚本文件,每个脚本负责不同的自动化任务: system_monitor.sh:监控系统资源使用情况,如CPU、内存、磁盘空间等,并生成报告。 log_analyzer.sh:分析系统日志文件,提取关

    黑鲨4S完好机备份基带qcn 黑鲨4S基带qcn

    资源说明; 完好机备份的基带qcn文件 下载后解压 可以解决常规更新降级刷第三方导致的基带丢失。 会使用有需要的友友下载,不会使用的请不要下载 需要开端口才可以写入,不会开端口的请不要下载 希望我的资源可以为你带来帮助 谢谢 参考: https://blog.csdn.net/u011283906/article/details/124720894?spm=1001.2014.3001.5502

    javaweb学生信息管理系统-lw.zip

    项目包含前后台完整源码。 项目都经过严格调试,确保可以运行! 具体项目介绍可查看博主文章或私聊获取 助力学习实践,提升编程技能,快来获取这份宝贵的资源吧!

    情侣恋爱主题源码LikeGirl v5.2.0最终版

    情侣恋爱主题源码LikeGirlv5.2.0最终版,经过多次更新和优化,情侣小站现已正式定版为v5.2.0。从今日起,此版本将成为项目的最终版本。 维护终止:自2024年11月7日起,情侣小站将不再接受新的功能更新或bug 修复。 用户责任:如在使用过程中遇到任何问题,请自行修复或选择放弃使用。

    基于java进销存管理系统.zip

    项目包含前后台完整源码。 项目都经过严格调试,确保可以运行! 具体项目介绍可查看博主文章或私聊获取 助力学习实践,提升编程技能,快来获取这份宝贵的资源吧!

    园区监控方案【范本模板】.pdf

    园区监控方案【范本模板】.pdf

    基于ssm的房源管理系统源代码(java+vue+mysql+说明文档+LW).zip

    基于ssm的房源管理系统源代码(java+vue+mysql+说明文档+LW).zip

    商务大楼能源计量系统施工方法.docx

    商务大楼能源计量系统施工方法.docx

Global site tag (gtag.js) - Google Analytics