源程序加密解决方案
1. 概述:
Java源程序的加密,有如下两种:
1使用混淆器对源码进行混淆,降低反编译工具的作用
2基于classloader的自定义加密、解密运行
1.1. 混淆器加密
1.2. 自定义classloader加密
1.2.1. 原理
原理:java虚拟机的动态加载机制,为classloader加密方案提供了理论基础。在jvm装载运行程序,初始的时候,只装在了必要的类,如java.lang.String等,而应用程序的类并没有一次性装入内存。Jvm解释执行应用程序的过程中,如果发现有未装载的类,则会调用装载正在执行的那个类的classloader来装载,这个过程是一层一层向上,直到顶层的classloader。Jvm启动的时候会装入ExtClassloader,而ExtClassloader又会装载AppClassloader,例如:
Class Hello{
Public static void main(String[] args){
System.out.println(“hello”);
HelloMethod.sayHello();
}
}
Class HelloMethod{
Public static void sayHello(){
System.out.println(“hello in static HelloMethod”);
}
}
有上面两个类的定义,在执行Hello类的main方法的时候,首先会委托装载Hello类的classloader来装载HelloMethod类,即jvm会委托AppClassloader来装载,但是在AppClassloader的实现的时候,会首先委托装载AppClassloader的classloader来装载,如果上层的classloader无法装载,才会由AppClassloader来装载HelloMethod类。这种模式叫做双亲委托模式。在jvm的所有classloader中都是如此,首先由父classloader加载,失败由自身加载。
Java虚拟机的这种特性,使得我们可以自定义一个classloader,然后由这个classloader来装载应用程序的启动类,然后在启动应用程序,那么当应用程序中有未装载的类的时候,java徐机器逐层向上请求classloader装载新类,那么首先被请求的就是装在应用程序的classloader,即我们自定义的classloader,我们完全可以首先调用自己的加载方法来加载类,如果加载不成功,可以请求父classloader来加载,因为来请求加载的类是完全有可能是系统的类。
在我们使用自定义的classloader的时候,装载自己的程序,那么就可以对装入的字节码进行一定的操作,比如解密。在调用自定义的装载器classloader的时候,首先是要装入被加密之后的文件,通常情况下仍旧已.class为扩展名,在调用defineClass之前对装入的数据解密。
1.2.2. Classloader的两个重要方法
protected Class defineClass(String name, byte[] classData, int offset, int length);
最原子的操作,在调用自定义的classloader加载新类的时候,首先根据自定义规则找到加载的类所存放的位置,然后将数据一byte[]类型读入,进行解密运算时候,调用该方法,以生成一个Class。这是一个比较核心的方法,这个方法是被抽象的Classloader定义为protected访问标记的,只有继承了Classloader这个类才能使用。
Class loadClass(String name, boolean resolve);
Java虚拟机,在装载新类,递归向上查找并调用的方法,在自定义classloader中需要重写,就是判断是否能够自己装载,如果能则自己装载,否则交由系统装载。
2. 源程序加密解决方案
2.1. 自定义classloader加密
加密和解密要是对应的,即使用加密之后的数据,经过解密是需要能够得到原来的数据。
2.1.1. 加密应用程序
为了简单,在这里才用一种简单的加密方法,把得到的需要加密的数据,以字节取,每一个字节加1,对应的解密就是每一个减1。
还是以Hello、HelloMethod类为例子,
BufferedInputStream bis = new BufferedInputStream(new FileInputSteam(“d:/workbench/ciphertool/bin/com/aatest/Hello.class”));
byte[] data = new byte[bis.avialable()];
bis.read(data);
bis.close();
for(int I = 0; I < data.length; i++){
data[i] =(byte)( data[i] + 1);
}
BufferedOutputStream bos = new BufferedOutputStream(new FileOutputStream(“d:/workbench/ciphertool/bin/com/aatest/Hello.class”));
bos.write(data);
bos.close();
将加密对象取出,加密,然后存盘。
2.1.2. 解密运行应用程序
在自定义的classloader接收到加载新类请求的时候,首先读入加密之后的文件,然后解密,最后调用defineClass(name, classData, offset, length)生成类,返回出去。
拦截新类加载请求
package com.cjnetwork.ciphertool.core;
import java.io.BufferedInputStream;
import java.io.File;
import java.io.FileInputStream;
import java.lang.reflect.Method;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.jar.JarEntry;
import java.util.jar.JarFile;
import com.cjnetwork.ciphertool.util.CipherUtil;
public class CjClassloader extends ClassLoader {
String classpath;
Map<String, Class> loadedClassPool = new HashMap<String, Class>();
public CjClassloader(String classpath) {
this.classpath = classpath;
}
@SuppressWarnings("unchecked")
@Override
public synchronized Class<?> loadClass(String name, boolean resolve) throws ClassNotFoundException {
Class claz = null;
if (loadedClassPool.containsKey(name)) {
claz = this.loadedClassPool.get(name);
} else {
try {
if (claz == null) {
claz = super.loadClass(name, false);
if (claz != null) {
System.out.println("系统加载成功:" + name);
}
}
} catch (ClassNotFoundException e) {
System.out.println("系统无法加载:" + name);
}
try {
if (claz == null) {
claz = loadByCjClassLoader(name);
if (claz != null) {
System.out.println("自定义加载成功:" + name);
}
}
} catch (Exception e) {
System.out.println("自定义无法加载:" + name);
}
if (claz != null) {
this.loadedClassPool.put(name, claz);
}
}
if (resolve) {
resolveClass(claz);
}
return claz;
}
/**
*
* 解密加载
*
*
* @param name
* @return
*/
@SuppressWarnings("unchecked")
private Class loadByCjClassLoader(String name) {
Class claz = null;
try {
byte[] rawData = loadClassData(name);
if (rawData != null) {
byte[] classData = decrypt(getReverseCypher(this.cjcipher.getKeycode()), rawData);
classData = CipherUtil.filter(classData, this.cjcipher);
claz = defineClass(name, classData, 0, classData.length);
}
} catch (Exception e) {
claz = null;
}
return claz;
}
}
最主要的是集成Classloader,并重写Class loadClass(String name, Boolean resolve)方法,在这个方法中,可以根据需要自己加载需要的文件,并解析生成Class。
解密并返回Class
BufferedInputStream bis = new BufferedInputStream(new FileInputSteam(“d:/workbench/ciphertool/bin/com/aatest/Hello.class”));
byte[] data = new byte[bis.avialable()];
bis.read(data);
bis.close();
for(int I = 0; I < data.length; i++){
data[i] =(byte)( data[i] - 1);
}
Class claz = defineClass(“Hello”, data, 0, data.length);
2.2. 加密自定义classloader
采用以上的方法,就可以将应用程序加密,使得被加密的程序不能被反编译,因为加密之后的class文件已经不是jvm定义的标准class文件,只能通过解密运行程序解密,才能运行。
如果只做到这一步,对于java源程序加密还没有完成。虽然应用程序无法直接反编译,但是自定义的classloader是没有被加密的,它自身是可以被反编译的。理论上,如果得到真正的class文件(即jvm标准的class文件),是可以反编译的java文件,在这里,假设得到class文件就得到了java文件。
如果攻击者将自定义的classloader反编译,得到源码,则攻击者可以再自定义解密运行的同事,将得到的应用程序的字节码存储到本地,那么,攻击者就相当于是跳过了源程序加密解密。例如攻击者在代码Class claz = defineClass(name, classData, offset, length);这句代码前,将classData存储到本地,即攻击者可以再解密运行应用程序的同时,将应用程序的字节码保存,就达到了破解应用程序源代码的效果。
为了描述方便,实例化一个 自定义的classloader,叫做CjClassLoader
这一个漏洞在于,CjClassLoader没有加密,攻击者可以在其中嵌入导出应用程序代码,那么,要解决这个问题,加密CjClassLoader就成了保护应用程序源代码的关键。
试想,如果加密、解密运行程序中,没有CjClassLoader.class文件,或是CjClassLoader.class文件本身也是经过加密的,CjClassLoader类的获得也是通过自己书写的方法动态获取,那么攻击者无法获取到CjClassLoader.class文件,相当于无法获取到CjClassLoader.java文件,那么也就无法再其中加入到处应用程序类文件的代码,那么被加密的应用程序可以认为是安全的。
假设将CjClassLoader.class加密后生成CjClassLoaderEncryptor0.class,那么CjClassLoader是安全了,但理论上攻击者还是可以通过反编译CjClassLoaderEncryptor0来获取CjClassLoader的源码,那么保护CjClassLoaderEncryptor0又成了保护应用程序的关键,注意在CjClassLoaderEncryptor0中存在解密CjClassLoader的密钥,即将密钥硬编码到CjClassLoaderEncryptor0中,这样做是为了防止攻击者直接获取密钥,直接破解最里面一层的加密,至于什么是最里面一层,请继续看后文。
那么如何CjClassLoaderEncryptor0.class的安全性呢,我们同样采取加密的方式,即将CjClassLoaderEncryptor0.class加密,生成CjClassLoaderEncryptor1.class,在解密运行的时候首先动态的生成CjClassLoaderEncryptor1.class,在由CjClassLoaderEncryptor1所定义的类动态的装入CjClassLoaderEncryptor0.class,并且解密生成CjClassLoader,最后使用CjClassLoader装入应用程序,运行。整体上的思路如下:
CjClassLoader.class ——》 CjClassLoaderEncryptor0.class
CjClassLoaderEncryptor1.class ——》 CjClassLoaderEncryptor1.class
CjClassLoaderEncryptor2.class ——》 CjClassLoaderEncryptor2.class
CjClassLoaderEncryptor3.class ——》 CjClassLoaderEncryptor3.class
。。。。。。
CjClassLoaderEncryptorN.class ——》 CjClassLoaderEncryptorN.class
这样的一级一级加密,我们称CjClassLoaderEncryptorN.class为最外层,成CjClassLoaderEncryptor0.class为最里层。除去最外层没有加密,里面的每一层都是加密之后的数据,都是不能直接为jvm所识别的字节码,都是需要通过后一级的解密程序解密之后才能为jvm所识别。
系统装在CjClassLoaderEncryptorN.class,生成CjClassLoaderEncryptorN类,使用反射机制,调用CjClassLoaderEncryptorN类中的方法,这个方法可以动态的装入CjClassLoaderEncryptor(N-1).class,并利用CjClassLoaderEncryptorN中的密钥,解密CjClassLoaderEncryptor(N – 1),然后生成CjClassLoaderEncryptor( N – 1)类,最后调用CjClassLoaderEncryptor(N – 1)中的方法。而CjClassLoaderEncryptor( N – 1)类中的方法,可以动态装入CjClassLoaderEncryptor(N- 2).class文件,并利用CjClassLoaderEncryptor(N – 1)中的密钥,解密CjClassLoaderEncryptor(N – 2),然后生成CjClassLoaderEncryptor(N – 2)类,最后调用方法,被调用的方法可以动态的装入CjClassLoaderEncryptor(N – 3).class。。。。。。。。
CjClassLoaderEncryptorN (密钥N,动态装入,解密,方法调用) CjClassLoaderEncryptor(N–1)
CjClassLoaderEncryptor(N-1) (密钥N-1,动态装入,解密,方法调用) CjClassLoaderEncryptor(N–2)
CjClassLoaderEncryptor(N-2) (密钥N-2,动态装入,解密,方法调用) CjClassLoaderEncryptor(N-3)
......
CjClassLoaderEncryptor1 (密钥1,动态装入,解密,方法调用) CjClassLoaderEncryptor0
CjClassLoaderEncryptor0 (密钥0,动态装入,解密,方法调用) CjClassLoader
最后使用CjClassLoader解密装载应用程序。
通过这样一个过程的加密CjClassLoader,可以达到保护加密程序本身的目的,这种保护在理论上是可破,但在实际操作中将会变得困难,因为密钥是通过硬编码的方式存储在下一层的封装器中,即CjClassLoaderEncryptor(N-1).class的密钥是放在CjClassLoaderEncryptorN.class中,如果存在CjClassLoaderEncryptor1000.class,那么加密过程将会变得非常复杂。
当然动态生成CjClassLoaderEncryptorN.class的工作,虽然内置了应编码(解密CjClassLoaderEncryptor(N-1)的密钥),但是这样一个过程,是不需要手动实现,利用程序自动生成即可。目前,这个版本的实现中是采用了动态生成CjClassLoaderEncryptorN.java文件,然后调用javac 命令,编译生成class文件。
请记住,这个过程是理论上不安全的,但如果需要加密的应用程序非常的重要,那么可以将加密、解密运行自身的CjClassLoader加密次数增加,以达到更加安全的目的。
2.3. 隐藏自定义classloader
通过上述加密CjClassLoader的方案,可以使得CjClassLoader变得相对安全,但似乎还是有一个问题,即解密运行程序本身的main方法中,会动态的装入CjClassLoaderEncryptorN,然后通过层层调用,最终获取到CjClassLoader类,然后使用CjClassLoader解密装载应用程序,这段代码是没有加密的,攻击者可以不考虑CjClassLoaderEncryptorN开始的层层调用,只需要在最终获取的CjClassLoader解密应用程序之前,将CjClassLoader本地化,即可以获得未经加密的CjClassLoader,这样,就不安全了。
解决这个问题,可以将这段代码中动态获取CjClassLoader类,修改为动态获取CjClassLoader中的Class loadClass(String name, Boolean resovle)方法,然后直接使用获取到的方法,开始加载应用程序。
如此,攻击者就没有办法直接获取到解密之后的CjClassLoader,保护了加密、解密程序。
2.4. 隐藏加密、解密方法
在上述的实现中,CjClassLoader中加密、解密应用程序的方法是被放置于CipherUtil.class文件中,而这个文件是没有被加密的,攻击者是可以直接获取到应用程序加密和解密的方法的,这给应用程序带来了不安全性,是的攻击者不利用解密程序的繁琐解密过程,而自定调用CipherUtil.class中的方法,解密应用程序。
解决这个问题,可以将CipherUtil.class中的加密和解密方法封装到CjClassloader中,因为CjClassloader是没有办法直接得到,所以认为加密解密所用到的方法是安全的。最终在程序中调用的时候不是直接得到CjClassloader类,都是通过CjClassloaderEncrytorN的层层方法调用,而直接获取到需要使用的方法。例如,我们可以在CjClassloaderEncrytorN类中封装了一个Method getEncrytMethod(),如此的方法,这个方法会去调用CjClassloaderEncrytor(N-1)中的同名方法,如此一直调用,直到CjClassloaderEncrytor0.class中,在这个类中直接反射获得CjClassloader中的加密方法,当然这个是比较特殊的,因为在CjClassloaderEncrytor0中时候反射获取CjClassloader中方法的时候,这个反射是需要带参数的,但这个带参数获取也是简单的。
3. bug
异常堆栈过长
经过这种一层一层的CjClassLoader解密运行的源程序,其堆栈是很长的,如果应用程序中,出现异常,答应异常或日志记录将会变得很麻烦,会记录很多无用的堆栈信息。
备注:文中提到的应用程序,指需要被加密的程序。
欢迎评论。
- 大小: 39.5 KB
- 大小: 51.3 KB
分享到:
相关推荐
本文将深入探讨`ClassLoader`的工作原理、加密解密应用程序以及如何防止类被反编译。 首先,让我们理解`ClassLoader`的基本概念。`ClassLoader`是Java中的一个接口,位于`java.lang`包下,它是Java运行时环境的一...
总的来说,"Jar包保护加密解决方案"是一个涵盖开发、部署和运行全过程的技术实践,涉及到Java编程、加密算法、混淆技术、自定义Class Loader以及JVM的深入理解和应用。通过综合运用这些技术,可以有效提高jar包的...
下面将通过一个简单的示例来展示如何使用自定义ClassLoader来实现Java源代码的加密与解密。 1. **创建自定义ClassLoader**: - 自定义ClassLoader需要重写`findClass`方法来处理加密后的类文件。 - 在`findClass`...
独立的应用程序,运行java时,带上参数-agentlib:<动态库文件所在路径>\classloader Tomcat、Jboss等Java application server修改启动脚本, 把执行java的命令行后面加上参数-agentlib:<动态链接库文件所在路径>\...
本工具是对java class文件进行加密保护防止反编译的工具!本工具全面支持linux/unix/windows操作系统。 继推出v1.0版本后,获得了用户大量的支持与的反馈,我们再次推出本v2.0版,对加密算法进行了更大的改进,安全...
本工具是对java class文件进行加密保护防止反编译的工具!本工具全面支持linux/unix/windows操作系统。 继推出v1.0版本后,获得了用户大量的支持与的反馈,我们再次推出本v2.0版,对加密算法进行了更大的改进,安全...
4. **部署和运行**:将加密的类文件和定制的ClassLoader打包在一起,当用户下载并运行应用程序时,ClassLoader会在内存中解密类文件,保证了源代码的隐私。 5. **解密**:在运行时,使用相同的密钥和DES算法对加载...
独立的应用程序,运行java时,带上参数-agentlib:<动态库文件所在路径>\classloader Tomcat、Jboss等Java application server修改启动脚本, 把执行java的命令行后面加上参数-agentlib:<动态链接库文件所在路径>\...
总结起来,Java 类加载器加密是一种增强程序安全性的技术,通过自定义类加载器和解密逻辑,可以在加载类之前对其进行加密,提高代码的保护性。同时,结合反射机制,即使类是加密状态,也能正常执行程序。这种技术常...
《一种无法被Dump的jar包加密保护解决方案》 在当今的软件开发领域,Java因其跨平台的特性及丰富的库资源而广受欢迎。然而,这也带来了代码安全的问题。Java的字节码格式相对简单,容易被反编译工具如JD-GUI解析,...
java编译后的class文件是一种中间字节字文件,很容易被反编译工具反编译,而传统的java源代码保护方法基本都是采用混淆的方式,但这样会带来很多麻烦,而且也不能真正保护class文件,本工具是对class文件进行加密,...
为了解决这个问题,本文探讨了如何在不改变程序原有结构的情况下,利用加密技术来保护Java源代码。 首先,我们探讨为什么需要加密源代码。与C或C++不同,Java的源码可以在不发布的情况下保持安全,但Java的类文件是...
`jenc2.1.gif`可能是关于一个特定加密库或工具的说明图像,该工具可能用于加密和解密Java类文件。通常,这些工具会提供一个图形用户界面(GUI),用户可以通过界面来操作和配置加密参数。 `logo.jpg`可能是该加密...
2. **Class文件加密**:对敏感的Class文件进行加密,然后在运行时通过自定义ClassLoader解密并加载。虽然这增加了反编译的难度,但自定义ClassLoader本身可能会成为攻击目标,一旦解密密钥或算法被破解,加密的Class...
3. **解密代码**:使用特定的ClassLoader,可以在运行时使用加密的类文件并透明解密。 4. **动态生成类**:根据用户需求,生成或定制类的实例。 5. **隔离执行环境**:多个应用程序或Applet可以在同一个JVM中运行,...
JVM代理是一种在JVM启动时或者运行时插入额外功能的方式,它允许开发者在不修改源代码的情况下扩展或修改Java应用程序的行为。通常,JVM代理被用于性能监控、日志记录、动态字节码注入等场景。Java提供了一种标准...
文章提出的技术方案主要依赖于Java软件序列号授权方式,结合类文件加密和动态解密,以及对关键类和代码的混淆处理。 在Java软件序列号授权设计方面,该方案以计算机的唯一标识MAC地址和用户提交信息为基础,通过RSA...
例如,使用自定义的ClassLoader来实现加密和解密过程。 3. **虚拟机层加密**:在Dalvik或ART虚拟机级别实现加密,比如修改Dalvik VM的指令集,使其在执行前需要解密。这种方法较为复杂,但能有效防止针对DEX文件的...