C语言,在对一个 struct variable使用
sizeof operator(操作符)的时候,往往得到的结果并不是我们想象中——struct内所有member的size之和。
当清楚了什么是Data alignment(数据对齐),对这个问题就豁然开朗了。
Data Alignment
在C/C++,甚至所有programming language中,每个Data object,更确切的说是 每个variable都有两个属性 :
- value (自身的值)
- memory address(其内存地址)
对每个variable的分析,都是基于内存分析的。所以,分析variable自身value的时候,又是分析 其在内存中的存储形式.所以更确切的是
Variable Properties
- bit pattern
- memory address
往往variable最重要的属性,是其内存地址。这也是为什么 在C/C++中,指针,pointer是如此的强大。
Data Alignment 并非针对 Data 本身,而是Data(Variable)的内存地址 。在 MSDN 对 Alignment做出定义,其第一句话便是
Alignment is a property of a memory address
以一张表格来展现32-bit machine 的内存结构
计算机中,内存是由大量的,连续的,可寻址的或编了号的memory cells(内存单元)构成。每个memory cell 占1 byte。
假如上述表格 bank0的address 为X,那么bank1,bank2,bank2的地址分别为X+1,X+2,X+2。
CPU在处理内存数据时,并非一次提取一个memory cell,一般提取一组相邻内存单元。在32-bit machine,CPU一次从内存中读取 4个连续的memory cell(4-byte) 。所以在此表格中,4 byte chunk(4字节流) 为一个读取周期。在读取一个int型 数据时,仅仅需要一个周期(int 占4 byte)。读取Double型,则需要2个读取周期。表格(D0-D31,32-bit)表示一个内存周期。如果是8-bit machine 即1字长(D0-D7),则需要4个周期来读取一个integer。
说了一些基本的内存知识,接下来看看 MSDN对Alignment的定义是怎么样的
MSDN 写道
Alignment is a property of a memory address, expressed as the numeric address modulo a power of 2. For example, the address 0x0001103F modulo 4 is 3; that address is said to be aligned to 4n+3, where 4 indicates the chosen power of 2. The alignment of an address depends on the chosen power of two. The same address modulo 8 is 7.
An address is said to be aligned to X if its alignment is Xn+0.
CPUs execute instructions that operate on data stored in memory, and the data are identified by their addresses in memory.
仔细理解下,可以总结为,当向内存中放入一个数据(variable)时,此数据的地址,严格来说是offset,起始地址,必须是此数据的Alignment的整数倍。即上述 Xn+0。
对于每种类型的数据,都有其自身的Alignment
Data Type | Alignments(in Bytes) |
char | 1 |
short | 2 |
int | 4 |
float | 4 |
double | 4 or 8 |
例如char 的offset可以在bank0,bank1,bank2,bank3任意一个(这里为了方便,假设bank0初始位置的address为0,依次类推)。short型的2 bytes只能存储在 bank0-bank1或者bank2-bank3,假如其offset在bank1上,即存储在bank1-bank2,那么此address为奇数,并非short alinment的整数倍。
int型,offset只能在bank0上,在其他位置,都不会是4的整数倍。如果一个int型的整数,0xABCDEF,在内存中的起始位置在 bank1 上会发生什么呢?
可以看到此integer的addres并非是4的整数倍,跨过两行,那么在读取此data时,就需要两个读取周期了。
所以
data alignment正是用来处理variable在这些bank中的存储方式。以避免发生此情况。在上表中,此整数的地址为5,5=4n+1,按照MSDN定义来说,此整数的alignment为1.但是int 型的alignment应该是4。所以这种情况又称为
misaligned。
Data Structure Padding
在C/C++中,因为对variable都有alignment的要求,所以在struct中,每一个member都要遵循alignment的要求。就拿 MSDN中的一个例子,来谈下struct的alignment
struct x_
{
char a; // 1 byte
int b; // 4 bytes
short c; // 2 bytes
char d; // 1 byte
} MyStruct;
同上述表格一样,struct中的member在内存中,是由下至上allocate的。
char a的起始位置在bank0,假如addrees为0;
int b,是不可以在bank1,bank2,bank3,这样b的offset为奇数,不是4的整数倍,所以只能在bank4,其4 bytes在 bank4-bank5-bank6-bank7;
那么在char a与int b之间需要填补3个无意义的byte。来满足int b的对齐方式。
short c是可以在bank8的,8为2的整数倍。所以b,c间无需要填补。那么short c 存储在 bank8-bank9。
char d可以存储在任何位置。那么char d 则存储在 byte10.
最后需填补1 byte
padding byte | char d | short c | short c |
int b | int b | int b | int b |
padding byte | padding byte | padding byte | char a |
在最后填补一个byte的原因是:
在struct的member的alignment中,找到alignment的最大值(此处为4 bytes),在struct的最后一个member填补 padding bytes使整个struct的size 为此aligment(4 bytes)的整数倍。
所以上述struct 在内存中的实际形式为
// Shows the actual memory layout
struct x_
{
char a; // 1 byte
char _pad0[3]; // padding to put 'b' on 4-byte boundary
int b; // 4 bytes
short c; // 2 bytes
char d; // 1 byte
char _pad1[1]; // padding to make sizeof(x_) multiple of 4
}
此struct的size为12 bytes,而不是8 bytes。
Resource
http://msdn.microsoft.com/en-us/library/ms253949.aspx
http://en.m.wikipedia.org/wiki/Data_structure_alignment#section_5
http://www.geeksforgeeks.org/archives/9705
http://www.songho.ca/misc/alignment/dataalign.html

- 大小: 11.2 KB

- 大小: 4.9 KB
分享到:
相关推荐
例如,在使用Intel C/C++ Compiler和Microsoft Visual C++ Compiler共同构建应用程序时,不同编译器之间的对齐规则可能存在差异,导致程序行为不一致。 1. **混合构建应用**:在混合使用VC++和Intel C++ Compiler ...
Parameters to C/C++ functions are either input to the function, output from the function, or both. Input parameters are usually values or const references, while output and input/output parameters ...
《你必须知道的495个C语言问题》结构清晰,讲解透彻,是各高校相关专业C语言课程很好的教学参考书,也是各层次C程序员的优秀实践指南。 -----------------------------------------------------------------------...
7、用于控制条件转移的表达式及取值范围是否书写正确 第20页 【案例1.7.1】 第20页 【案例1.7.2】 第21页 【案例1.7.3】 第22页 8、条件分支处理是否有遗漏 第24页 【案例1.8.1】 第24页 9、引用已释放的资源 第26页...
基于改进粒子群算法的DG储能选址定容优化模型:解决电力系统时序性问题的可靠程序解决方案,基于改进粒子群算法的DG储能选址定容模型优化解决电力系统问题,DG储能选址定容模型matlab 程序采用改进粒子群算法,考虑时序性得到分布式和储能的选址定容模型,程序运行可靠 这段程序是一个改进的粒子群算法,主要用于解决电力系统中的优化问题。下面我将对程序进行详细分析。 首先,程序开始时加载了一些数据文件,包括gfjl、fljl、fhjl1、cjgs和fhbl。这些文件可能包含了电力系统的各种参数和数据。 接下来是一些参数的设置,包括三种蓄电池的参数矩阵、迭代次数、种群大小、速度更新参数、惯性权重、储能动作策略和限制条件等。 然后,程序进行了一些初始化操作,包括初始化种群、速度和适应度等。 接下来是主要的迭代过程。程序使用粒子群算法的思想,通过更新粒子的位置和速度来寻找最优解。在每次迭代中,程序计算了每个粒子的适应度,并更新个体最佳位置和全局最佳位置。 在每次迭代中,程序还进行了一些额外的计算,如潮流计算、储能约束等。这些计算可能涉及到电力系统的潮流计算、功率平衡等知识点。 最后,程序输
数学建模相关主题资源2
内容概要:本文详细介绍了一系列用于科学研究、工程项目和技术开发中至关重要的实验程序编写与文档报告撰写的资源和工具。从代码托管平台(GitHub/GitLab/Kaggle/CodeOcean)到云端计算环境(Colab),以及多种类型的编辑器(LaTeX/Microsoft Word/Overleaf/Typora),还有涵盖整个研究周期的各种辅助工具:如可视化工具(Tableau)、数据分析平台(R/Pandas)、项目管理工具(Trello/Jira)、数据管理和伦理审核支持(Figshare/IRB等),最后提供了典型报告的具体结构指导及其范本实例链接(arXiv/PubMed)。这为实验流程中的各个环节提供了系统的解决方案,极大地提高了工作的效率。 适合人群:高校学生、科研工作者、工程技术人员以及从事学术写作的人员,无论是新手入门还是有一定经验的人士都能从中受益。 使用场景及目标:帮助读者高效地准备并开展实验研究活动;促进团队间协作交流;规范研究报告的形式;提高对所收集资料的安全性和隐私保护意识;确保遵循国际公认的伦理准则进行实验。
四轮毂驱动电动汽车稳定性控制策略:基于滑模与模糊神经网络的转矩分配与仿真研究,四轮毂驱动电动汽车稳定性控制:基于滑模与模糊神经网络的转矩分配策略及联合仿真验证,四轮毂驱动电动汽车稳定性控制,分布式驱动转矩分配。 上层基于滑模,模糊神经网络控制器决策横摆力矩,下层基于动态载荷分配,最优分配,平均分配均可做。 simulink与carsim联合仿真。 ,四轮毂驱动;电动汽车稳定性控制;分布式驱动;转矩分配;滑模控制;模糊神经网络控制器;横摆力矩;动态载荷分配;最优分配;平均分配;Simulink仿真;Carsim仿真,四驱电动稳定性控制:滑模与模糊神经网络决策的转矩分配研究
本资源提供了一份详细的PyCharm安装教程,涵盖下载、安装、配置、激活及使用步骤,适合新手快速搭建Python开发环境。
毕业设计
原版宋体.ttf,原版宋体安装文件,安装方式,直接右键安装。
利用Xilinx FPGA内嵌的软核处理器MicroBlaze,加上自主编写的AXI_IIC控制器,实现对IMX327传感器IIC总线的控制,同时辅以UART调试串口,实现系统状态的实时监控与调试。
在 GEE(Google Earth Engine)中,XEE 包是一个用于处理和分析地理空间数据的工具。以下是对 GEE 中 XEE 包的具体介绍: 主要特性 地理数据处理:提供强大的函数和工具,用于处理遥感影像和其他地理空间数据。 高效计算:利用云计算能力,支持大规模数据集的快速处理。 可视化:内置可视化工具,方便用户查看和分析数据。 集成性:可以与其他 GEE API 和工具无缝集成,支持多种数据源。 适用场景 环境监测:用于监测森林砍伐、城市扩展、水体变化等环境问题。 农业分析:分析作物生长、土地利用变化等农业相关数据。 气候研究:研究气候变化对生态系统和人类活动的影响。
毕业设计
整个文件的代码
名字微控制器_STM32_DFU_引导加载程序_dapboo_1740989527.zip
详细介绍及样例数据:https://blog.csdn.net/T0620514/article/details/145991332
anaconda配置pytorch环境
立体仓库控制组态王6.55与三菱PLC联机仿真程序:视频教程与IO表接线图CAD详解,9仓位立体仓库控制系统优化方案:组态王6.55与三菱PLC联机仿真程序视频教程及IO表接线图CAD详解,9仓位立体仓库控制组态王6.55和三菱PLC联机仿真程序+视频+带io表接线图CAD ,关键词:立体仓库;控制组态王6.55;三菱PLC;联机仿真程序;视频;io表接线图;CAD,立体仓库控制组态王与三菱PLC联机仿真程序资源包