一、直接调用命令行发送邮件(以及shell中sendEmail)
问题:主题为中文时乱码
主题乱码,网上找了很多,基本上可以确认是头文件编码的问题,通过对主题进行base64编码可以解决这个问题,实现如下:
# 发送email,username用户名,subject主题,text内容
def send_email(self,username,subject,text):
# 邮件内容为utf-8格式
text = text.encode('utf-8')
# 主题需要进行base64编码在转成utf8,注意后面这个strip,否则又出现一个换行符
subject = "=?UTF-8?B?%s?=" % base64.encodestring(subject).strip()
cmd = "/usr/bin/sendEmail -f test@yoursite.com -t %s -o message-charset=utf-8 -u \"%s\" -m \"%s\" " % (username,subject,text)
try:
rt = os.popen(cmd).read().split()
return True
except Exception,e:
return False
直接用shell发送邮件的代码如下
subject=`echo -n 任务异常 | base64`
test_time=20130123
sendEmail -f aaa@xxx.com -t target@target.com -o message-charset=utf-8 -u "=?UTF-8?B?${subject}?=" -m "已经存在任务,${test_time}的任务取消进行"
补充: 正文的换行符是
\n
如果是ssh调用其他的邮件服务器来发邮件,命令要ssh命令要用双引号括起来,否则换行字符不识别
ssh root@**** "sendemai -o ...."
二、使用SMTP协议发送邮件
newusers = 'aaaaaa@xxx.com;cccc@xx.com'
newccs = 'bbbbb@xxx.com;adfadf@xxx.com'
text = '测试邮件'
mail_host = 'smtp.xxx.com'
mail_user = 'xxx_service'
mail_user_full = 'xxx_service@xxx.com'
mail_pwd = '密码'
mail_bcc = ''
#表头信息
msg = MIMEText(text,'base64', 'utf-8')
msg['From'] = mail_user_full
msg['Subject'] = subject
msg['To'] = newusers
msg['Cc'] = newccs
msg['Bcc'] = ''
try:
s = smtplib.SMTP()
s.connect(mail_host,'25')
#login
s.login(mail_user,mail_pwd)
#send mail
print newusers
print newccs
print msg.as_string()
# 邮件人发送和抄送统一放在一起发送,需要在上面的标头信息中进行区分
s.sendmail(mail_user_full,newusers.split(';')+newccs.split(';')+mail_bcc.split(";"),msg.as_string())
s.close()
print 'success'
# print rt
return True
except Exception,e:
# print 'email error'
print e
return False
分享到:
相关推荐
内容概要:报告详细介绍了生成式人工智能对企业和消费者的影响及其商业前景。生成式人工智能通过生成与训练数据相似的新颖数据,提升了人工智能从‘赋能者’到‘协作者’的角色。报告讨论了生成式人工智能的技术基础,如Transformers,以及在消费者和企业中的应用案例。文中指出,生成式人工智能可以优化企业的工作流程,提高效率和创新能力,但同时强调了安全性、数据隐私和道德等问题。 适合人群:企业高管、技术领导者、数据科学家、产品经理等。 使用场景及目标:帮助企业理解和评估生成式人工智能的商业潜力,优化内部流程,提高效率和创新力,以及防范潜在的风险。 其他说明:生成式人工智能正处于快速发展的初期阶段,各行业都有广阔的应用前景,但需要注意监管和风险管理。
2024年第三季度深圳房地产市场回顾-CBRE
项目经过测试均可完美运行! 环境说明: 开发语言:java 框架:ssm jdk版本:jdk1.8 数据库:mysql 5.7+ 数据库工具:Navicat11+ 管理工具:maven 开发工具:idea/eclipse 部署容器:tomcat7+
CSDN Matlab武动乾坤上传的资料均有对应的代码,代码均可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
ccc2.4.13 内置inspector改造
人力资源+大数据+薪酬报告+涨薪调薪,在学习、工作生活中,越来越多的事务都会使用到报告,通常情况下,报告的内容含量大、篇幅较长。那么什么样的薪酬报告才是有效的呢?以下是小编精心整理的调薪申请报告,欢迎大家分享。相信老板看到这样的报告,一定会考虑涨薪的哦。
内容概要:本资源聚焦 Android 编程实战,包含毕业设计示例、完整的 Android 项目源码及文档分享。采用 MVC 模式进行架构设计,结合 JSP 技术与 SQL Server 2000 数据库管理系统,实现高效的 Android 应用开发。 适用人群:Android 开发初学者、计算机专业学生进行毕业设计参考、希望提升 Android 开发技能的程序员。 实用场景及目标:适用于开发各类 Android 应用项目,帮助开发者快速构建稳定、功能丰富的应用程序,同时为毕业设计提供优质的模板和思路。 说明:资源提供了详细的代码注释和文档说明,方便学习者理解和上手,助力提升 Android 开发能力和项目实战经验。
内容概要:本资源聚焦 Android 编程实战,包含毕业设计示例、完整的 Android 项目源码及文档分享。采用 MVC 模式进行架构设计,结合 JSP 技术与 SQL Server 2000 数据库管理系统,实现高效的 Android 应用开发。 适用人群:Android 开发初学者、计算机专业学生进行毕业设计参考、希望提升 Android 开发技能的程序员。 实用场景及目标:适用于开发各类 Android 应用项目,帮助开发者快速构建稳定、功能丰富的应用程序,同时为毕业设计提供优质的模板和思路。 说明:资源提供了详细的代码注释和文档说明,方便学习者理解和上手,助力提升 Android 开发能力和项目实战经验。
本代码是基于python pytorch环境安装的。 下载本代码后,有个环境安装的requirement.txt文本 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保存在本地名称为model.ckpt 运行03pyqt界面.py,就可以实现自己训练好的模型去识别图片了
项目经过测试均可完美运行! 环境说明: 开发语言:java 框架:ssm jdk版本:jdk1.8 数据库:mysql 5.7+ 数据库工具:Navicat11+ 管理工具:maven 开发工具:idea/eclipse 部署容器:tomcat7+
zadig-2.9.rar USB JTAG/serial debug unit
内容概要:本资源聚焦 Android 编程实战,包含毕业设计示例、完整的 Android 项目源码及文档分享。采用 MVC 模式进行架构设计,结合 JSP 技术与 SQL Server 2000 数据库管理系统,实现高效的 Android 应用开发。 适用人群:Android 开发初学者、计算机专业学生进行毕业设计参考、希望提升 Android 开发技能的程序员。 实用场景及目标:适用于开发各类 Android 应用项目,帮助开发者快速构建稳定、功能丰富的应用程序,同时为毕业设计提供优质的模板和思路。 说明:资源提供了详细的代码注释和文档说明,方便学习者理解和上手,助力提升 Android 开发能力和项目实战经验。
weixin295微信小程序选课系统+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
CSDN Matlab武动乾坤上传的资料均有对应的代码,代码均可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
项目经过测试均可完美运行! 环境说明: 开发语言:java 框架:ssm jdk版本:jdk1.8 数据库:mysql 5.7+ 数据库工具:Navicat11+ 管理工具:maven 开发工具:idea/eclipse 部署容器:tomcat7+
CSDN Matlab武动乾坤上传的资料均有对应的代码,代码均可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
Phytium OpenWrt 是基于OpenWrt系统,加入了Phytium CPU和开发板的支持,开发者可以在Phytium CPU上使用OpenWrt系统。
JS实现的虚化雪景动态背景特效源码
ElasticSearch同步MySQL环境搭建笔记
本代码是基于python pytorch环境安装的。 下载本代码后,有个环境安装的requirement.txt文本 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保存在本地名称为model.ckpt 运行03pyqt界面.py,就可以实现自己训练好的模型去识别图片了