《例解回归分析(原书第5版)》
基本信息
原书名: Regression Analysis by Example,Fifth Edition
原出版社: Wiley
作者: (美)Samprit Chatterjee Ali S.Hadi
译者: 郑忠国 许静
丛书名: 统计学精品译丛
出版社:机械工业出版社
ISBN:9787111431565
上架时间:2013-7-23
出版日期:2013 年8月
开本:16开
页码:296
版次:5-1
所属分类:数学 > 分析 > 数学分析
更多关于 》》》《例解回归分析(原书第5版) 》
内容简介
数学书籍
《例解回归分析(原书第5版)》在探索性数据分析的思想和原则指导下组织材料,包括简单线性回归、多元线性回归、回归诊断、定性预测变量、变量变换、共线性数据分析和逻辑斯谛回归等13章内容.书中强调数据分析的技巧而不是统计理论的发展,几乎是手把手地教读者如何去分析数据、检验结论、改进分析.作者精心挑选了丰富的实例,形象生动而又系统详尽地阐述了回归分析的基本理论和具体的应用技术,还辅以启发式的推理和直观的图形方法.
《例解回归分析(原书第5版)》既可以作为非统计学专业回归分析的入门教材,又可以作为统计学专业理论回归分析的补充教材,对于从事数据分析的人员来说,本书更是必备的参考书.
目录
《例解回归分析(原书第5版)》
中文版序
译者序
前言
第1章 概述1
1.1 什么是回归分析1
1.2 公用数据集1
1.3 回归分析应用实例选讲2
1.3.1 农业科学2
1.3.2 劳资关系3
1.3.3 政府5
1.3.4 历史8
1.3.5 环境科学8
1.3.6 工业生产9
1.3.7 挑战者号航天飞机11
1.3.8 医疗费用12
1.4 回归分析的步骤14
1.4.1 问题陈述14
1.4.2 选择相关变量15
1.4.3 收集数据15
.1.4.4 模型设定16
1.4.5 拟合方法17
1.4.6 模型拟合18
1.4.7 模型评价和选择18
1.4.8 回归分析的目标19
1.5 本书的内容和结构20
习题21
第2章 简单线性回归22
2.1 引言22
2.2 协方差与相关系数22
2.3 实例:计算机维修数据26
2.4 简单线性回归模型27
2.5 参数估计28
2.6 假设检验30
2.7 置信区间34
2.8 预测34
2.9 拟合效果度量35
2.10 过原点的回归直线38
2.11 平凡的回归模型39
2.12 文献40
习题40
第3章 多元线性回归45
3.1 引言45
3.2 数据和模型的描述45
3.3 实例:主管人员业绩数据46
3.4 参数估计47
3.5 回归系数的解释48
3.6 中心化和规范化50
3.6.1 含截距模型的中心化和规范化50
3.6.2 无截距模型的规范化51
3.7 最小二乘估计的性质52
3.8 复相关系数53
3.9 单个回归系数的推断54
3.10 线性模型中的假设检验55
3.10.1 检验所有预测变量的回归系数为056
3.10.2 检验某些回归系数为058
3.10.3 检验某些回归系数相等60
3.10.4 带约束的回归参数的估计和检验61
3.11 预测62
3.12 小结63
习题63
附录 多元回归的矩阵表示69
第4章 回归诊断:违背模型假定的检测71
4.1 引言71
4.2 标准回归假定71
4.3 各种残差72
4.4 图形方法74
4.5 拟合模型前的图形76
4.5.1 一维图76
4.5.2 二维图77
4.5.3 旋转图78
4.5.4 动态图78
4.6 拟合模型后的图形79
4.7 检查线性和正态性假定的图形79
4.8 杠杆、强影响点和异常值80
4.8.1 响应变量的异常值81
4.8.2 预测变量中的异常值81
4.8.3 伪装和淹没问题82
4.9 观测影响的度量83
4.9.1 cook距离84
4.9.2 welsch-kuh度量84
4.9.3 hadi影响度量85
4.10 位势残差图86
4.11 如何处理异常点87
4.12 回归方程中变量的作用88
4.12.1 添加变量图88
4.12.2 残差加分量图88
4.13 添加一个预测变量的效应92
4.14 稳健回归92
习题93
第5章 定性预测变量97
5.1 引言97
5.2 薪水调查数据97
5.3 交互变量100
5.4 回归方程组:两个组的比较102
5.4.1 斜率和截距都不同的模型103
5.4.2 斜率相同但截距不同的模型107
5.4.3 截距相同但斜率不同的模型108
5.5 示性变量的其他应用109
5.6 季节性109
5.7 回归参数随时间的稳定性111
习题115
第6章 变量变换121
6.1 引言121
6.2 线性化变换122
6.3 x射线灭菌124
6.3.1 线性模型的不适用性125
6.3.2 对数变换实现线性化125
6.4 稳定方差的变换126
6.5 异方差误差的检测130
6.6 消除异方差性131
6.7 加权最小二乘132
6.8 数据的对数变换132
6.9 幂变换134
6.10 总结137
习题137
第7章 加权最小二乘法141
7.1 引言141
7.2 异方差模型142
7.2.1 主管人员数据142
7.2.2 大学教育花费数据143
7.3 两阶段估计144
7.4 教育费用数据145
7.5 拟合剂量反应关系曲线151
习题152
第8章 相关误差问题153
8.1 引言:自相关153
8.2 消费支出和货币存量153
8.3 durbin-watson统计量155
8.4 利用变换消除自相关性157
8.5 当回归模型具有自相关误差时的迭代估计法158
8.6 变量的缺失和模型的自相关性159
8.7 住房开工规模的分析160
8.8 durbin-watson统计量的局限性162
8.9 用示性变量消除季节效应164
8.10 两个时间序列之间的回归166
习题167
第9章 共线性数据分析171
9.1 引言171
9.2 共线性对推断的影响172
9.3 共线性对预测的影响176
9.4 共线性的检测178
9.4.1 共线性的简单征兆179
9.4.2 方差膨胀因子182
9.4.3 条件指数184
习题186
第10章 共线性数据的处理189
10.1 引言189
10.2 主成分189
10.3 利用主成分的计算192
10.4 施加约束条件194
10.5 搜索模型中回归系数的线性函数195
10.6 回归系数的有偏估计198
10.7 主成分回归199
10.8 消除数据中的共线性200
10.9 回归系数的约束条件202
10.10 主成分回归中的注意事项203
10.11 岭回归205
10.12 岭估计法206
10.13 岭回归:几点注解209
10.14 小结210
10.15 文献210
习题211
附录10.a 主成分214
附录10.b 岭回归216
附录10.c 代理岭回归218
第11章 变量选择219
11.1 引言219
11.2 问题的陈述219
11.3 删除变量的后果220
11.4 回归方程的用途221
11.4.1 描述和建模221
11.4.2 估计和预测221
11.4.3 控制221
11.5 评价回归方程的准则222
11.5.1 残差均方222
11.5.2 mallows的cp准则223
11.5.3 信息准则223
11.6 共线性和变量选择224
11.7 评价所有可能的回归模型225
11.8 变量选择方法225
11.8.1 前向选择方法226
11.8.2 后向剔除方法226
11.8.3 逐步回归法226
11.9 变量选择的一般注意事项227
11.10 对主管人员业绩的研究227
11.11 共线性数据的变量选择231
11.12 凶杀数据231
11.13 利用岭回归进行变量选择234
11.14 空气污染研究中的变量选择234
11.15 拟合回归模型的可能策略243
11.16 文献244
习题244
附录 误设模型的影响247
第12章 逻辑斯谛回归249
12.1 引言249
12.2 定性数据的建模249
12.3 logit模型250
12.4 例子:破产概率的估计251
12.5 逻辑斯谛回归模型诊断254
12.6 决定变量的去留255
12.7 逻辑斯谛回归的拟合度257
12.8 多项logit模型258
12.8.1 多项逻辑斯谛回归259
12.8.2 例子:确定化学糖尿病259
12.8.3 顺序值逻辑斯谛回归263
12.8.4 例子:重新考察化学糖尿病的确定问题264
12.9 分类问题:另一种方法264
习题266
第13章 进一步的论题268
13.1 引言268
13.2 广义线性模型268
13.3 泊松回归模型269
13.4 引进新药269
13.5 稳健回归270
13.6 拟合一个二次式模型271
13.7 美国海湾中pcb的分布272
习题275
附录a 统计表276
参考文献283
索引291
相关推荐
《例解回归分析(英文第5版)》是由Samprit Chatterjee与Ali S. Hadi编著的一本专注于回归分析的书籍。回归分析是统计学中一种重要的分析方法,主要用于研究两个或两个以上变量间的关系,特别是因变量与一个或多个自...
Regression analysis has become one of the most widely used statistical tools for analyzing multifactor data. It is appealing because it provides a conceptually simple method for investigating ...
例解回归分析,中文原书第三版
很清晰的版本 还不错
例解回归分析(中文第3版),有很多不错的例子
回归分析是一种统计方法,用于研究变量之间的关系,特别是因变量(目标变量)与一个或多个自变量(预测变量)之间的关系。在这个主题中,我们将深入探讨回归分析的应用、数据挖掘和统计学原理。 首先,回归分析的...
《应用回归分析答案详解》 回归分析是一种统计学方法,用于研究两个或多个变量之间的关系。在软件操作后的实验结果中,应用回归分析能够帮助我们理解数据的趋势、预测未知值并检验假设。以下是对相关知识点的详细...
"应用回归分析课后习题部分答案-何晓群版" 本文档是应用回归分析的课后习题部分答案,涵盖了一元线性回归、二元线性回归和多元线性回归等内容。下面是对每个题目的详细解释和知识点总结: 一元线性回归: * 2.14 ...
在这个压缩包中,我们找到了“应用回归分析课后题答案详细版.pdf”,这显然是一份关于该课程课后习题解答的资料,可能包含了对书中问题的深入解析和R语言实现的代码示例。 回归分析在实际应用中广泛用于预测、建模...
回归分析是一种统计学方法,用于探索变量间的关系,并建立数学模型来预测或解释这些关系。在标题和描述中反复提及“回归分析pdf”,这可能是指一份详细的文档,涵盖了回归分析的理论、应用以及实例解析。回归分析的...
7个回归分析方法 什么是回归分析? 回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。 这种技术通常用于 预测分析、 时间序列模型 以及发现变量之间的...
在解读给定文件信息中提供的内容时,我们首先需要根据标题、描述和标签将文档识别为一份关于近代回归分析的课程报告。虽然提供的【部分内容】看似是一些不成系统的字符序列,但根据描述可以推断这些内容是近代回归...
谢宇教授是这个领域的权威专家,他的《回归分析》一书为学习者提供了深入浅出的理论讲解和实践指导。 这本书的配套数据集为读者提供了实际操作的机会,使理论知识得以应用到真实的案例中。通过分析这些数据,学生和...
回归分析(修订版) 谢宇 (作者)
8. 统计学基础:为了更好地进行数据分析,书中也会涉及一些基本的统计概念,如概率、假设检验、回归分析等,帮助读者理解统计方法在实际问题中的应用。 9. 分类和预测模型:虽然这不是本书的重点,但书中仍会简要...
多元线性回归分析是一种统计学方法,用于研究两个或多个自变量与一个因变量之间的关系。在MATLAB环境中,这种分析能帮助我们建立数学模型,以预测或解释因变量的变化如何受到自变量的影响。本教程将详细介绍如何在...
回归分析 谢宇
在这个特定的资源中,"应用回归分析"是由何晓群教授编著的,出自电子工业出版社的一本书。这本书可能涵盖了回归分析的基本概念、模型选择、参数估计、假设检验以及在实际问题中的应用。 回归分析的核心在于建立一个...