`

hive防止数据倾斜 参考资料

    博客分类:
  • hive
 
阅读更多

 

http://www.cnblogs.com/end/archive/2012/06/19/2554582.html   写的不错  风生水起

 

 

1数据倾斜的原因
1.1操作:

关键词

情形

后果

Join

其中一个表较小,

但是key集中

分发到某一个或几个Reduce上的数据远高于平均值

大表与大表,但是分桶的判断字段0值或空值过多

这些空值都由一个reduce处理,灰常慢

group by

group by 维度过小,

某值的数量过多

处理某值的reduce灰常耗时

Count Distinct

某特殊值过多

处理此特殊值的reduce耗时

1.2原因:

1)、key分布不均匀

2)、业务数据本身的特性

3)、建表时考虑不周

4)、某些SQL语句本身就有数据倾斜

1.3表现:

任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成。因为其处理的数据量和其他reduce差异过大。

单一reduce的记录数与平均记录数差异过大,通常可能达到3倍甚至更多。 最长时长远大于平均时长。

2数据倾斜的解决方案

2.1参数调节:

hive.map.aggr = true

Map 端部分聚合,相当于Combiner

hive.groupby.skewindata=true

有数据倾斜的时候进行负载均衡,当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输出结果集合会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 Group By Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;第二个 MR Job 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。

2.2 SQL语句调节:

如何Join:

关于驱动表的选取,选用join key分布最均匀的表作为驱动表

做好列裁剪和filter操作,以达到两表做join的时候,数据量相对变小的效果。

大小表Join:

使用map join让小的维度表(1000条以下的记录条数) 先进内存。在map端完成reduce.

大表Join大表:

把空值的key变成一个字符串加上随机数,把倾斜的数据分到不同的reduce上,由于null值关联不上,处理后并不影响最终结果。

count distinct大量相同特殊值

count distinct时,将值为空的情况单独处理,如果是计算count distinct,可以不用处理,直接过滤,在最后结果中加1。如果还有其他计算,需要进行group by,可以先将值为空的记录单独处理,再和其他计算结果进行union。

group by维度过小:

采用sum() group by的方式来替换count(distinct)完成计算。

特殊情况特殊处理:

在业务逻辑优化效果的不大情况下,有些时候是可以将倾斜的数据单独拿出来处理。最后union回去。

3典型的业务场景

3.1空值产生的数据倾斜

场景:如日志中,常会有信息丢失的问题,比如日志中的 user_id,如果取其中的 user_id 和 用户表中的user_id 关联,会碰到数据倾斜的问题。

解决方法1: user_id为空的不参与关联(红色字体为修改后)

select * from log a
  join users b
  on a.user_id is not null
  and a.user_id = b.user_id
union all
select * from log a
  where a.user_id is null;

解决方法2 :赋与空值分新的key值

select *
  from log a
  left outer join users b
  on case when a.user_id is null then concat(‘hive’,rand() ) else a.user_id end = b.user_id;

结论:方法2比方法1效率更好,不但io少了,而且作业数也少了。解决方法1中 log读取两次,jobs是2。解决方法2 job数是1 。这个优化适合无效 id (比如 -99 , ’’, null 等) 产生的倾斜问题。把空值的 key 变成一个字符串加上随机数,就能把倾斜的数据分到不同的reduce上 ,解决数据倾斜问题。

3.2不同数据类型关联产生数据倾斜

场景:用户表中user_id字段为int,log表中user_id字段既有string类型也有int类 型。当按照user_id进行两个表的Join操作时,默认的Hash操作会按int型的id来进行分配,这样会导致所有string类型id的记录都分 配到一个Reducer中。

解决方法:把数字类型转换成字符串类型

select * from users a
  left outer join logs b
  on a.usr_id = cast(b.user_id as string)

3.3小表不小不大,怎么用 map join 解决倾斜问题

使用 map join 解决小表(记录数少)关联大表的数据倾斜问题,这个方法使用的频率非常高,但如果小表很大,大到map join会出现bug或异常,这时就需要特别的处理。 以下例子:

select * from log a
  left outer join users b
  on a.user_id = b.user_id;

users 表有 600w+ 的记录,把 users 分发到所有的 map 上也是个不小的开销,而且 map join 不支持这么大的小表。如果用普通的 join,又会碰到数据倾斜的问题。

解决方法:

select /*+mapjoin(x)*/* from log a
  left outer join (
    select  /*+mapjoin(c)*/d.*
      from ( select distinct user_id from log ) c
      join users d
      on c.user_id = d.user_id
    ) x
  on a.user_id = b.user_id;

假如,log里user_id有上百万个,这就又回到原来map join问题。所幸,每日的会员uv不会太多,有交易的会员不会太多,有点击的会员不会太多,有佣金的会员不会太多等等。所以这个方法能解决很多场景下的数据倾斜问题。

4总结

使map的输出数据更均匀的分布到reduce中去,是我们的最终目标。由于Hash算法的局限性,按key Hash会或多或少的造成数据倾斜。大量经验表明数据倾斜的原因是人为的建表疏忽或业务逻辑可以规避的。在此给出较为通用的步骤:

1、采样log表,哪些user_id比较倾斜,得到一个结果表tmp1。由于对计算框架来说,所有的数据过来,他都是不知道数据分布情况的,所以采样是并不可少的。

2、数据的分布符合社会学统计规则,贫富不均。倾斜的key不会太多,就像一个社会的富人不多,奇特的人不多一样。所以tmp1记录数会很少。把 tmp1和users做map join生成tmp2,把tmp2读到distribute file cache。这是一个map过程。

3、map读入users和log,假如记录来自log,则检查user_id是否在tmp2里,如果是,输出到本地文件a,否则生 成<user_id,value>的key,value对,假如记录来自member,生成<user_id,value>的 key,value对,进入reduce阶段。

4、最终把a文件,把Stage3 reduce阶段输出的文件合并起写到hdfs。

如果确认业务需要这样倾斜的逻辑,考虑以下的优化方案:

1、对于join,在判断小表不大于1G的情况下,使用map join

2、对于group by或distinct,设定 hive.groupby.skewindata=true

3、尽量使用上述的SQL语句调节进行优化

 

分享到:
评论

相关推荐

    大数据hive数据倾斜,hive-sql优化

    大数据Hive数据倾斜、Hive-SQL优化 在大数据处理中,Hive是一个非常重要的工具,然而在实际应用中,数据倾斜和性能优化问题经常会出现。为了解决这些问题,我们需要了解Hive的性能调优、数据模型设计、数据倾斜判断...

    《Hive数据仓库案例教程》教学课件 第5章 Hive数据操作.pdf

    《Hive数据仓库案例教程》教学课件 第5章 Hive数据操作.pdf《Hive数据仓库案例教程》教学课件 第5章 Hive数据操作.pdf《Hive数据仓库案例教程》教学课件 第5章 Hive数据操作.pdf《Hive数据仓库案例教程》教学课件 第...

    大数据 hive 实战数据

    在大数据处理领域,Hive是一个极其重要的工具,它被广泛应用于大数据分析和数据仓库操作。本实战数据集主要涉及两个核心部分:`video`数据和`user`数据,这些都是构建大数据分析模型的基础元素。让我们深入探讨一下...

    hive元数据生成建表语句

    在大数据处理领域,Hive是一个基于Hadoop的数据仓库工具,它允许用户使用SQL(HQL,Hive Query Language)查询和管理存储在Hadoop文件系统(HDFS)中的大规模数据集。Hive元数据是Hive操作的核心部分,它包含了...

    《Hive数据仓库案例教程》教学大纲.pdf

    《Hive数据仓库案例教程》教学大纲主要涵盖了Hive在大数据环境中的应用,以及如何通过Hive构建数据仓库。Hive作为一个基于Hadoop的数据仓库工具,它的主要功能是将结构化的数据文件映射为数据库表,并提供SQL-like...

    hive数据倾斜问题总结笔记

    总结了hive中数据处理发生的倾斜问题,不同的原因对应不同的解决方案,比较具体可实操的方法

    hive数据倾斜原因分析及解决方案.pdf

    Hive 数据倾斜原因分析及解决方案 Hive 数据倾斜是指在 Hive 执行过程中,某些 Reduce 任务处理的数据量远远高于平均值,导致整个 Job 的执行效率下降,影响着业务的正常运行。以下是 Hive 数据倾斜的原因和解决...

    基于 Hive的数据分析案例 -MM聊天软件数据分析

    基于 Hive 的数据分析案例 -MM 聊天软件数据分析 本资源摘要信息主要介绍了基于 Hive 的数据分析案例,通过对 MM 聊天软件的数据进行统计分析,了解用户行为,实现精准的用户画像,并为公司的发展决策提供精确的...

    hive测试数据

    6. **数据倾斜**:在分布式环境中,数据不均匀分布可能导致某些节点负载过高,Hive提供了处理数据倾斜的策略。 7. **优化查询**:包括使用Hive的EXPLAIN命令理解查询执行计划,以及使用JOIN优化、减少笛卡尔积、...

    Hive数据仓库之垃圾分类数据分析系统

    (3)sqoop数据迁移,完成HIve与MySQL数据库中的数据交互 (4)Echarts搭建动态可视化大屏 (5)SpringBoot搭建可视化后台系统,完成前端与后台的数据传递与交互。 (6)基于Cenots7 搭建虚拟机,配置Hadoop、HDFS、...

    利用Hive进行复杂用户行为大数据分析及优化案例

    利用Hive进行复杂用户行为大数据分析及优化案例(全套视频+课件...14_Hive中的数据倾斜及解决方案-三种join方式 15_Hive中的数据倾斜及解决方案-group by 16_Hive中使用正则加载数据 17_Hive中使用Python脚本进行预处理

    datax数据从hive导入mysql数据缺失解决

    ### DataX 数据从 Hive 导入 MySQL 数据缺失解决 #### 背景介绍 在大数据处理领域,Hive 和 MySQL 分别作为数据仓库与关系型数据库的重要组成部分,在数据流转过程中承担着关键角色。Hive 通常用于存储海量数据并...

    项目实战——钉钉报警校验ElasticSearch和Hive数据仓库内的数据质量(Java版本)

    此篇文章主要选取关键性指标,数据校验数据源Hive和目标ES内的数据是否一致; 因为你不知道将Hive的数据导入到了ElasticSearch后,数据量是否准确,所以需要钉钉报警校验ElasticSearch和Hive数据仓库内的数据质量,...

    林子雨Hive数据集下载

    林子雨Hive数据集下载

    Hive几种数据导入方式

    ### Hive 数据导入方式详解 Hive 是一种广泛应用于大数据处理领域的工具,它为用户提供了类 SQL 的查询语言 HiveQL,使用户能够更加便捷地进行数据提取、转换与加载(ETL)。本文主要针对 Ambari 搭建的 Hadoop ...

    Hive.sql,hive的元数据

    Hive.sql

    大数据Hive测试数据uaction.rar

    标题中的“大数据Hive测试数据uaction.rar”指的是一个用于测试Hive处理能力的数据集,这个数据集主要关注用户操作记录。Hive是Apache Hadoop生态系统中的一个组件,它提供了一个基于SQL的查询语言(HQL)来处理和...

    hive数据存储模式

    ### Hive数据存储模式详解 #### 一、Hive的数据存储 Hive作为一款基于Hadoop的数据仓库工具,其核心功能之一就是提供了一种高效的管理大数据的方式。Hive的数据分为两大类:**表数据**和**元数据**。 - **表数据*...

    ES-HIVE数据互通

    ### ES-HIVE数据互通知识点详解 #### 环境配置 在进行Elasticsearch与Hive的数据互通之前,首先需要确保环境配置正确无误。本文档提到的环境为实验性的单节点集群,具体配置如下: - **操作系统**:Vagrant + ...

Global site tag (gtag.js) - Google Analytics