//一个基于二叉红黑树实现的map
//关于红黑树http://blog.csdn.net/chenssy/article/details/26668941这篇博客写的非常好
//另外TreeSet的是用TreeMap实现的。(组合设计模式,将所有的实现委托给TreeMap实现)
//先看构造函数
public TreeMap() {
comparator = null;
}
public TreeMap(Comparator<? super K> comparator) {
this.comparator = comparator;
}
public TreeMap(Map<? extends K, ? extends V> m) {
comparator = null;
putAll(m);
}
//新增
public V put(K key, V value) {
Entry<K,V> t = root;
//如果root是null,则直接放入root。
if (t == null) {
//检查是否实现了Comparable接口,以及释放传入的是null
compare(key, key); // type (and possibly null) check
root = new Entry<>(key, value, null);
size = 1;
modCount++;
return null;
}
int cmp;
Entry<K,V> parent;
// split comparator and comparable paths
Comparator<? super K> cpr = comparator;
//如果传入了comparator
if (cpr != null) {
do {
//无限循环设置位置
parent = t;
cmp = cpr.compare(key, t.key);
//如果比父节点小则放在左边
if (cmp < 0)
t = t.left;
//大则放在右边
else if (cmp > 0)
t = t.right;
//相当则新值代替旧值
else
return t.setValue(value);
} while (t != null);
}
//如果Comparable是null
else {
if (key == null)
throw new NullPointerException();
Comparable<? super K> k = (Comparable<? super K>) key;
do {
//无限循环设置位置
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
Entry<K,V> e = new Entry<>(key, value, parent);
if (cmp < 0)
parent.left = e;
else
parent.right = e;
//平衡整棵树
fixAfterInsertion(e);
size++;
modCount++;
return null;
}
private void fixAfterInsertion(Entry<K,V> x) {
x.color = RED;
while (x != null && x != root && x.parent.color == RED) {
if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
Entry<K,V> y = rightOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf(x), BLACK);
setColor(y, BLACK);
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x));
} else {
if (x == rightOf(parentOf(x))) {
x = parentOf(x);
rotateLeft(x);
}
setColor(parentOf(x), BLACK);
setColor(parentOf(parentOf(x)), RED);
rotateRight(parentOf(parentOf(x)));
}
} else {
Entry<K,V> y = leftOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf(x), BLACK);
setColor(y, BLACK);
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x));
} else {
if (x == leftOf(parentOf(x))) {
x = parentOf(x);
rotateRight(x);
}
setColor(parentOf(x), BLACK);
setColor(parentOf(parentOf(x)), RED);
rotateLeft(parentOf(parentOf(x)));
}
}
}
root.color = BLACK;
}
final int compare(Object k1, Object k2) {
return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
: comparator.compare((K)k1, (K)k2);
}
//新增map
public void putAll(Map<? extends K, ? extends V> map) {
int mapSize = map.size();
//如果当前集合是空的并且map是SortedMap
if (size==0 && mapSize!=0 && map instanceof SortedMap) {
Comparator c = ((SortedMap)map).comparator();
//如果用的比较器相同
if (c == comparator || (c != null && c.equals(comparator))) {
++modCount;
try {
buildFromSorted(mapSize, map.entrySet().iterator(),
null, null);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
return;
}
}
//如果不是put方法
super.putAll(map);
}
private void buildFromSorted(int size, Iterator it,
java.io.ObjectInputStream str,
V defaultVal)
throws java.io.IOException, ClassNotFoundException {
this.size = size;
//获取根节点
root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
it, str, defaultVal);
}
//根据key获取值
public V get(Object key) {
Entry<K,V> p = getEntry(key);
return (p==null ? null : p.value);
}
final Entry<K,V> getEntry(Object key) {
// Offload comparator-based version for sake of performance
if (comparator != null)
//当有比较器
return getEntryUsingComparator(key);
if (key == null)
throw new NullPointerException();
Comparable<? super K> k = (Comparable<? super K>) key;
Entry<K,V> p = root;
//无限循环获取值
while (p != null) {
int cmp = k.compareTo(p.key);
if (cmp < 0)
p = p.left;
else if (cmp > 0)
p = p.right;
else
return p;
}
return null;
}
final Entry<K,V> getEntryUsingComparator(Object key) {
K k = (K) key;
Comparator<? super K> cpr = comparator;
if (cpr != null) {
Entry<K,V> p = root;
while (p != null) {
int cmp = cpr.compare(k, p.key);
if (cmp < 0)
p = p.left;
else if (cmp > 0)
p = p.right;
else
return p;
}
}
return null;
}
//根据key删除值
public V remove(Object key) {
Entry<K,V> p = getEntry(key);
if (p == null)
return null;
V oldValue = p.value;
deleteEntry(p);
return oldValue;
}
private void deleteEntry(Entry<K,V> p) {
modCount++;
size--;
// If strictly internal, copy successor's element to p and then make p
// point to successor.
if (p.left != null && p.right != null) {
Entry<K,V> s = successor(p);
p.key = s.key;
p.value = s.value;
p = s;
} // p has 2 children
// Start fixup at replacement node, if it exists.
Entry<K,V> replacement = (p.left != null ? p.left : p.right);
if (replacement != null) {
// Link replacement to parent
replacement.parent = p.parent;
if (p.parent == null)
root = replacement;
else if (p == p.parent.left)
p.parent.left = replacement;
else
p.parent.right = replacement;
// Null out links so they are OK to use by fixAfterDeletion.
p.left = p.right = p.parent = null;
// Fix replacement
if (p.color == BLACK)
fixAfterDeletion(replacement);
} else if (p.parent == null) { // return if we are the only node.
root = null;
} else { // No children. Use self as phantom replacement and unlink.
if (p.color == BLACK)
fixAfterDeletion(p);
if (p.parent != null) {
if (p == p.parent.left)
p.parent.left = null;
else if (p == p.parent.right)
p.parent.right = null;
p.parent = null;
}
}
}
//返回map的长度
public int size() {
return size;
}
//是否包含某个键
public boolean containsKey(Object key) {
return getEntry(key) != null;
}
//是否包含某个值
public boolean containsValue(Object value) {
for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
if (valEquals(value, e.value))
return true;
return false;
}
//获取最左边的作为也就是第一个entry
final Entry<K,V> getFirstEntry() {
Entry<K,V> p = root;
if (p != null)
while (p.left != null)
p = p.left;
return p;
}
//找寻下一个节点
static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
if (t == null)
return null;
//如果有右子树,则寻找右子树最左边节点作为下一个节点
else if (t.right != null) {
Entry<K,V> p = t.right;
while (p.left != null)
p = p.left;
return p;
} else {
//没有就往上找
Entry<K,V> p = t.parent;
Entry<K,V> ch = t;
//如果是自己,则继续向上寻找
while (p != null && ch == p.right) {
ch = p;
p = p.parent;
}
return p;
}
}
static final boolean valEquals(Object o1, Object o2) {
return (o1==null ? o2==null : o1.equals(o2));
}
//返回映射中第一个key,即树最左边的key
public K firstKey() {
return key(getFirstEntry());
}
static <K> K key(Entry<K,?> e) {
if (e==null)
throw new NoSuchElementException();
return e.key;
}
//获取最后一个 即最右边的entry
final Entry<K,V> getLastEntry() {
Entry<K,V> p = root;
if (p != null)
while (p.right != null)
p = p.right;
return p;
}
//获取最大的键即最右边的键
public K lastKey() {
return key(getLastEntry());
}
//清空集合
public void clear() {
modCount++;
size = 0;
root = null;
}
//获取最左边的entry(最低位的entry)
public Map.Entry<K,V> firstEntry() {
return exportEntry(getFirstEntry());
}
//转成SimpleImmutableEntry。
static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {
return (e == null) ? null :
new AbstractMap.SimpleImmutableEntry<>(e);
}
//获取最右边的entry(最高位的entry)
public Map.Entry<K,V> lastEntry() {
return exportEntry(getLastEntry());
}
//移除最左边的键
public Map.Entry<K,V> pollFirstEntry() {
Entry<K,V> p = getFirstEntry();
Map.Entry<K,V> result = exportEntry(p);
if (p != null)
deleteEntry(p);
return result;
}
//移除最右边的键
public Map.Entry<K,V> pollLastEntry() {
Entry<K,V> p = getLastEntry();
Map.Entry<K,V> result = exportEntry(p);
if (p != null)
deleteEntry(p);
return result;
}
//返回小于当前键的最大entry
public Map.Entry<K,V> lowerEntry(K key) {
return exportEntry(getLowerEntry(key));
}
//返回小于当前键的最大entry
final Entry<K,V> getLowerEntry(K key) {
Entry<K,V> p = root;
while (p != null) {
int cmp = compare(key, p.key);
//在根部的右侧
if (cmp > 0) {
if (p.right != null)
p = p.right;
else
return p;
//在根据的左侧
} else {
if (p.left != null) {
p = p.left;
} else {
Entry<K,V> parent = p.parent;
Entry<K,V> ch = p;
while (parent != null && ch == parent.left) {
ch = parent;
parent = parent.parent;
}
return parent;
}
}
}
return null;
}
//返回小于当前键的最大键
public K lowerKey(K key) {
return keyOrNull(getLowerEntry(key));
}
static <K,V> K keyOrNull(TreeMap.Entry<K,V> e) {
return (e == null) ? null : e.key;
}
//返回小于等于键的最大entry
public Map.Entry<K,V> floorEntry(K key) {
return exportEntry(getFloorEntry(key));
}
//返回小于等于键的最大键
public K floorKey(K key) {
return keyOrNull(getFloorEntry(key));
}
final Entry<K,V> getFloorEntry(K key) {
Entry<K,V> p = root;
while (p != null) {
int cmp = compare(key, p.key);
if (cmp > 0) {
if (p.right != null)
p = p.right;
else
return p;
} else if (cmp < 0) {
if (p.left != null) {
p = p.left;
} else {
Entry<K,V> parent = p.parent;
Entry<K,V> ch = p;
while (parent != null && ch == parent.left) {
ch = parent;
parent = parent.parent;
}
return parent;
}
} else
return p;
}
return null;
}
//返回大于等于给定键的最小entry
public Map.Entry<K,V> ceilingEntry(K key) {
return exportEntry(getCeilingEntry(key));
}
//返回大于等于给定键的最小key
public K ceilingKey(K key) {
return keyOrNull(getCeilingEntry(key));
}
final Entry<K,V> getCeilingEntry(K key) {
Entry<K,V> p = root;
while (p != null) {
int cmp = compare(key, p.key);
if (cmp < 0) {
if (p.left != null)
p = p.left;
else
return p;
} else if (cmp > 0) {
if (p.right != null) {
p = p.right;
} else {
Entry<K,V> parent = p.parent;
Entry<K,V> ch = p;
while (parent != null && ch == parent.right) {
ch = parent;
parent = parent.parent;
}
return parent;
}
} else
return p;
}
return null;
}
//返回大于key的最小entry
public Map.Entry<K,V> higherEntry(K key) {
return exportEntry(getHigherEntry(key));
}
//返回大于key的最小key
public K higherKey(K key) {
return keyOrNull(getHigherEntry(key));
}
final Entry<K,V> getHigherEntry(K key) {
Entry<K,V> p = root;
while (p != null) {
int cmp = compare(key, p.key);
if (cmp < 0) {
if (p.left != null)
p = p.left;
else
return p;
} else {
if (p.right != null) {
p = p.right;
} else {
Entry<K,V> parent = p.parent;
Entry<K,V> ch = p;
while (parent != null && ch == parent.right) {
ch = parent;
parent = parent.parent;
}
return parent;
}
}
}
return null;
}
//返回key的set集合
public Set<K> keySet() {
return navigableKeySet();
}
public NavigableSet<K> navigableKeySet() {
KeySet<K> nks = navigableKeySet;
return (nks != null) ? nks : (navigableKeySet = new KeySet(this));
}
static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
private final NavigableMap<E, Object> m;
KeySet(NavigableMap<E,Object> map) { m = map; }
public Iterator<E> iterator() {
if (m instanceof TreeMap)
return ((TreeMap<E,Object>)m).keyIterator();
else
return (Iterator<E>)(((TreeMap.NavigableSubMap)m).keyIterator());
}
public Iterator<E> descendingIterator() {
if (m instanceof TreeMap)
return ((TreeMap<E,Object>)m).descendingKeyIterator();
else
return (Iterator<E>)(((TreeMap.NavigableSubMap)m).descendingKeyIterator());
}
public int size() { return m.size(); }
public boolean isEmpty() { return m.isEmpty(); }
public boolean contains(Object o) { return m.containsKey(o); }
public void clear() { m.clear(); }
public E lower(E e) { return m.lowerKey(e); }
public E floor(E e) { return m.floorKey(e); }
public E ceiling(E e) { return m.ceilingKey(e); }
public E higher(E e) { return m.higherKey(e); }
public E first() { return m.firstKey(); }
public E last() { return m.lastKey(); }
public Comparator<? super E> comparator() { return m.comparator(); }
public E pollFirst() {
Map.Entry<E,Object> e = m.pollFirstEntry();
return (e == null) ? null : e.getKey();
}
public E pollLast() {
Map.Entry<E,Object> e = m.pollLastEntry();
return (e == null) ? null : e.getKey();
}
public boolean remove(Object o) {
int oldSize = size();
m.remove(o);
return size() != oldSize;
}
public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
E toElement, boolean toInclusive) {
return new KeySet<>(m.subMap(fromElement, fromInclusive,
toElement, toInclusive));
}
public NavigableSet<E> headSet(E toElement, boolean inclusive) {
return new KeySet<>(m.headMap(toElement, inclusive));
}
public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
return new KeySet<>(m.tailMap(fromElement, inclusive));
}
public SortedSet<E> subSet(E fromElement, E toElement) {
return subSet(fromElement, true, toElement, false);
}
public SortedSet<E> headSet(E toElement) {
return headSet(toElement, false);
}
public SortedSet<E> tailSet(E fromElement) {
return tailSet(fromElement, true);
}
public NavigableSet<E> descendingSet() {
return new KeySet(m.descendingMap());
}
}
//返回map的逆序视图
public NavigableMap<K, V> descendingMap() {
NavigableMap<K, V> km = descendingMap;
return (km != null) ? km :
(descendingMap = new DescendingSubMap(this,
true, null, true,
true, null, true));
}
分享到:
相关推荐
再比如,集合框架的`HashMap`和`TreeMap`等也进行了优化,提高了性能和线程安全性。 总而言之,JDK 1.8源码是一份宝贵的资源,它揭示了Java平台的内部运作细节,对于提升开发者的技术水平和解决问题的能力有着不可...
Lambda表达式是JDK1.8的一个重要特性,它简化了对匿名内部类的使用,使得代码更加简洁和易读。通过使用 Lambda,我们可以将函数作为参数传递,或者将函数直接定义为方法体。这在处理集合操作时尤其有用,配合Stream ...
HashMap是非线程安全的,适合于高并发环境下的读操作。 二、TreeMap TreeMap使用红黑树作为底层数据结构,提供了有序的键值对存储。红黑树是一种自平衡的二叉查找树,它保证了插入、删除和查找的时间复杂度都是O...
- 集合框架是Java中用于存储和操作对象的工具,包括List(如ArrayList和LinkedList)、Set(如HashSet和TreeSet)和Map(如HashMap和TreeMap)。 - 泛型的引入增强了集合框架的类型安全,防止了运行时类型转换异常...
- `CopyOnWriteArrayList`和`CopyOnWriteArraySet`:适用于读多写少的场景,线程安全。 7. **集合操作** - `add()`、`remove()`:添加和移除元素。 - `contains()`、`equals()`:检查元素是否存在或集合是否相等...
- ConcurrentSkipListMap:线程安全的TreeMap实现,适用于大量读操作的场景。 - ConcurrentSkipListSet:线程安全的TreeSet实现,基于ConcurrentSkipListMap。 - CopyOnWriteArraySet:基于CopyOnWriteArrayList...
本文将从源码分析角度出发,深入探讨Java集合框架中常用的接口和实现类的底层数据结构及其特点,并探讨其在实际业务开发中的应用选择。 Java集合框架中的数据结构主要分为两大类:Collection集合和Map集合。...
事务的隔离级别有读未提交、读已提交、可重复读、串行化。MySQL的binlog有ROW、STATEMENT、MIXED三种模式,各有优缺点。分布式事务解决方案如2PC、3PC。数据库事务隔离级别决定了并发操作的可见性和一致性,MySQL...
红黑树是一种自平衡的二叉查找树,常用于集合框架如`TreeMap`和`TreeSet`。NIO(Non-blocking I/O)适用于大量连接、低延迟的场景,它允许程序在等待I/O操作完成时执行其他任务。Java9引入了模块系统、JShell(REPL...
3. HashMap与TreeMap:HashMap提供快速查找,TreeMap保持元素排序。 四、泛型 1. 泛型引入的目的:类型安全,编译时检查类型,避免强制类型转换。 2. 类、接口、方法均可使用泛型,如ArrayList,函数式接口Function...
LinkedHashMap和TreeMap 4. 12 对Map排序 4. 13 Properties属性文件 第5章 字符串 5. 1 使用String 5. 2 基本数据类型与字符串的转化 5. 3 判断Java标识符 5. 4 使用StringBuffer ...
4. **集合框架**:Java集合框架是处理对象集合的重要工具,包括List(如ArrayList和LinkedList)、Set(如HashSet和TreeSet)和Map(如HashMap和TreeMap)接口及其实现类,以及泛型的使用。 5. **异常处理**:学习...
4. **集合框架**:Java集合框架包括List(如ArrayList, LinkedList)、Set(如HashSet, TreeSet)和Map(如HashMap, TreeMap)。挑战可能要求你使用这些数据结构存储和操作数据。 5. **IO流**:如果你需要读取或...