HTTPS 是我们常见的 HTTP 协议与某个加密协议的混合体,也就是 HTTP+S。这个 S 可以是 TLS(安全传输层协议)、也可以是 SSL(安全套接层),不过我更认可另一个抽象概括的说法,HTTP+Security。首先,HTTPS并不是这种加密技术的正式名称,HTTPS代表的是“在TLS/SSL上实现的HTTP协议”,因此实现加密的其实是位于HTTP下面的TLS/SSL层。我们看看TLS/SSL所实现的几个主要机制:
1. 证书:通过第三方权威证书颁发机构(如VeriSign)验证和担保网站的身份,防止他人伪造网站身份与不知情的用户建立加密连接。
2. 密钥交换:通过公钥(非对称)加密在网站服务器和用户之间协商生成一个共同的会话密钥。3. 会话加密:通过机制(2)协商的会话密钥,用对称加密算法对会话的内容进行加密。
4. 消息校验:通过消息校验算法来防止加密信息在传输过程中被篡改。通过上述机制,用户与网站之间的传输内容受到了保护,因此能够获得很高的安全性。
不过,任何密码学手段都不是绝对安全的,上面几个机制中其实都存在可能的风险:1. 证书:如果有人伪造证书,浏览器会发出警告,提示用户该网站的证书可能是伪造的,应该停止访问,但如果你无视浏览器的警告,你的会话信息就有可能被伪造者窃取。此外,如果第三方证书颁发机构遭到攻击,攻击者窃取了已颁发的证书密钥,就可以伪造相应的网站证书,完全骗过浏览器的安全机制,这样的例子的确曾经发生过。2. 密钥交换:RSA,这是一种最普遍使用的公钥加密算法,一般来说安全性很高。3. 会话加密:AES-256(CBC Mode),这是一种非常广泛使用的加密算法,采用256位密钥代表其安全性很高,如果采用128位密钥(AES-128)则安全性就差一些。4. 消息校验:SHA1,这是一种散列算法,SHA1的安全性比MD5要好,但如果采用SHA256则安全性会更好一些。上面很抽象是不是,我们用“传纸条”这个人人小时候都做过的事来形象的说明一下。HTTP假设你现在正坐在教室里上课,现在你非常想和走道旁的迷人的 TA 说一些话,一般这个时候你会用“传纸条”的方式来交流。而这个方式和 TCP/IP 协议基本的工作模式十分相像:通过小动作引起对方注意;对方以多种可能的方式(注视、肢体语言等)回应于你;你确认对方感知到你后,将纸条传给对方;对方阅读纸条;对方给予你阅读后的反应;怎么样,这个流程是不是很熟悉?如果你要传递纸条的 TA 距离你很远怎么办?HTTP 协议就是指你在纸条上写明你要传给的 TA 是谁,或者 TA 的座位在哪,接着只需要途径的同学拿到纸条后根据纸条上的指示依次将纸条传过去就 OK 了。这个时候问题来了:途径的同学完全可以观看并知道你在纸条上写了什么。这就是 HTTP 传输所面临的问题之一:中间人攻击,指消息传递的过程中,处在传递路径上的攻击者可以嗅探或者窃~听传输数据的内容。HTTPSHTTPS 针对这个问题,采用了“加密”的方式来解决。最著名原始的加密方法就是对称加密算法了,就是双方约定一个暗号,用什么字母替换什么字母之类的。现在一般采用一种叫 AES(高级加密算法)的对称算法。对称加密算法既指加密和解密需要使用的密钥 key 是一样的。AES 在数学上保证了,只要你使用的 key 足够长,破解几乎是不可能的(除非光子计算机造出来了)我们先假设在没有密钥 key 的情况下,密文是无法被破解的,然后再回到这个教室。你将用 AES 加密后的内容噌噌噌地写在了纸条上,正要传出去的时候你突然想到,TA 没有 key 怎么解密内容呀,或者说,应该怎么把 key 给TA?如果把 key 也写在纸条上,那么中间人照样可以破解窃~听纸条内容。也许在现实环境中你有其他办法可以把 key 通过某种安全的渠道送到 TA 的手里,但是互联网上的实现难度就比较大了,毕竟不管怎样,数据都要经过那些路由。于是聪明的人类发明了另一种加密算法——非对称加密算法。这种加密算法会生成两个密钥(key1 和 key2)。凡是 key1 加密的数据,key1 自身不能解密,需要 key2 才能解密;凡事 key2 加密的数据,key2 自身不能解密,只有 key1 才能解密。目前这种算法有很多中,最常用的是 RSA。其基于的数学原理是:两个大素数的乘积很容易算,但是用这个乘积去算出是哪两个素数相乘就很复杂了。好在以目前的技术,分解大数的素因确实比较困难,尤其是当这个大数足够大的时候(通常使用2的10次方个二进制位那么大),就算是超级计算机,解密也需要非常长的时间。现在就把这种非对称加密的方法应用在我们教室传纸条的场景里。你在写纸条内容之前先用 RSA 技术生成了一对密钥 k1 和 k2。你把 k1 用明文传了出去,路经也许有人会截取,但是没有用,k1 加密的数据需要 k2 才可以破解,而 k2 在你自己手中。k1 传到了目的人,目的人会去准备一个接下来准备用于对称加密(AES)的传输密钥 key,然后用收到的 k1 把 key 加密,传给你。你用手上的 k2 解出 key 后,全教室只有你和你的目的人拥有这个对称加密的 key,你们俩就可以尽情聊天不怕窃~听啦~这里也许你会有问题,为什么不直接用非对称加密来加密信息,而是加密 AES 的 key 呢?因为非对称加密和解密的平均消耗时间比较长,为了节省时间提高效率,我们通常只是用它来交换密钥,而非直接传输数据。然而使用非对称加密真的可以防范中间人攻击吗?虽然看上去很安全,但是实际上却挡不住可恶的中间人攻击。假设你是 A,你的目的地是 B,现在要途径一个恶意同学M。中间人的恶意之处在于它会伪装成你的目标。当你要和 B 完成第一次密钥交换的时候,M 把纸条扣了下来,假装自己是B并伪造了一个 key,然后用你发来的 k1 加密了 key 发还给你。你以为你和 B 完成了密钥交换,实际上你是和 M 完成了密钥交换。同事 M 和 B 完成一次密钥交换,让 B 以为和 A 你完成了密钥交换。现在整体的加密流程变成了A(加密链接1)->M(明文)->B(加密链接2)的情况了,这时候 M 依然可以知道A和B传输的全部消息。这个时候就是体现 HTTPS 和传纸条的区别了。在教室里,你是和一位与你身份几乎对等的的对象来通信;而在访问网站时,对方往往是一个比较大(或者知名)的服务者,他们有充沛的资源,或许他们可以向你证明他们的合法性。此时我们需要引入一个非常权威的第三方,一个专门用来认证网站合法性的组织,可以叫做 CA(Certificate Authority)。各个网站服务商可以向 CA 申请证书,使得他们在建立安全连接时可以带上 CA 的签名。而 CA 得安全性是由操作系统或者浏览器来认证的。你的 Windows、Mac、Linux、Chrome、Safari 等会在安装的时候带上一个他们认为安全的 CA 证书列表,只有和你建立安全连接的网站带有这些CA的签名,操作系统和浏览器才会认为这个链接是安全的,否则就有可能遭到中间人攻击。一旦某个 CA 颁发的证书被用于的非法途径,那么这个 CA 之前颁发过的所有证书都将被视为不安全的,这让所有 CA 在颁发证书时都十分小心,所以 CA 证书在通常情况下是值得信任的。
原文链接:http://www.jianshu.com/p/be7a20cc8468
分享到:
相关推荐
HTTPS是HTTP的安全版本,通过SSL/TLS协议提供加密和身份验证,保护用户数据的安全。 FTP(文件传输协议)用于在网络上进行文件传输。SMTP(简单邮件传输协议)处理电子邮件的发送,而POP3或IMAP协议则用于接收邮件...
15HTTPS协议 16流媒体协议 17P2P协议 18DNS协议 19HTTPDNS 20CDN 21数据中心 23移动网络 24云中网络 25软件定义网络 26云中的网络安全 27云中的网络Qo 28云中网络的隔离GRE、VXLAN 29容器网络 30容器网络之Flannel ...
:bust_in_silhouette: 趣谈应用使用Node.js,Express和Socket.io和Vanilla JS在前端通过自定义UI与websockets进行实时聊天的应用程序 :laptop: 设置要运行此项目,请使用npm在本地安装它: 首先,请打开您的终端并...
趣谈网络协议 刘超 <price>68 ``` 在这个例子中,XML的结构清晰地表达了订单信息,包括日期、课程名称、作者和价格。即使字段顺序改变,只要XML结构保持正确,接收方仍能正确解析。而且,如果需要添加新...
Tripple Farm:Match 3 Combination Game Complete Project 合成小镇三消Unity合成消除游戏项目游戏插件模版C# 支持Unity2020.3.4或更高 您知道像三合镇这样的著名益智游戏,并且您想制作一个自己的游戏。就是这样。这个包正好适合您。 这是一个完整的项目,您可以在零分钟内将其上传到 appstore 或 googleplay 商店。 基本规则: 3个或以上相同的道具可以匹配升级为新的道具。动物如果被困住,也可以合并。 羽毛: -移动(android/ios)就绪。 - 包含所有源代码。 -超过 12 座建筑/军团需要升级。 -三种特殊物品可以提供帮助。 - 三个不同的主题(场景和动物) -unity iap 支持 -Unity UI -广告位已准备好 -包含详细文档
内容概要:本文档是一份针对Java初学者的基础测试题,分为不定项选择题、简答题和编程题三大部分。选择题涵盖标识符、数组初始化、面向对象概念、运算符优先级、循环结构、对象行为、变量命名规则、基本
内容概要:本文详细介绍了如何利用MATLAB进行机器人运动学、动力学以及轨迹规划的建模与仿真。首先,通过具体的代码实例展示了正运动学和逆运动学的实现方法,包括使用DH参数建立机械臂模型、计算末端位姿以及求解关节角度。接着,讨论了雅克比矩阵的应用及其在速度控制中的重要性,并解释了如何检测和处理奇异位形。然后,深入探讨了动力学建模的方法,如使用拉格朗日方程和符号工具箱自动生成动力学方程。此外,还介绍了多种轨迹规划技术,包括抛物线插值和五次多项式插值,确保路径平滑性和可控性。最后,提供了常见仿真问题的解决方案,强调了在实际工程项目中需要注意的关键点。 适合人群:对机器人控制感兴趣的初学者、希望深入了解机器人运动学和动力学的学生及研究人员、从事机器人开发的技术人员。 使用场景及目标:① 学习如何使用MATLAB进行机器人运动学、动力学建模;② 掌握不同类型的轨迹规划方法及其应用场景;③ 解决仿真过程中遇到的各种问题,提高仿真的稳定性和准确性。 其他说明:文中提供的代码片段可以直接用于实验和教学,帮助读者更好地理解和掌握相关概念和技术。同时,针对实际应用中的挑战提出了实用的建议,有助于提升项目的成功率。
包括:源程序工程文件、Proteus仿真工程文件、配套技术手册等 1、采用51/52单片机作为主控芯片; 2、发送机:18B20测温、开关模拟灯光,发送数据; 3、接收机:接受数据、12864液晶显示;
内容概要:本文探讨了在微电网优化中如何处理风光能源的不确定性,特别是通过引入机会约束和概率序列的方法。首先介绍了风光能源的随机性和波动性带来的挑战,然后详细解释了机会约束的概念,即在一定概率水平下放松约束条件,从而提高模型灵活性。接着讨论了概率序列的应用,它通过对历史数据分析生成多个可能的风光发电场景及其概率,以此为基础构建优化模型的目标函数和约束条件。文中提供了具体的Matlab代码示例,演示了如何利用CPLEX求解器解决此类优化问题,并强调了参数选择、模型构建、约束添加以及求解过程中应注意的技术细节。此外,还提到了一些实用技巧,如通过调整MIP gap提升求解效率,使用K-means聚类减少场景数量以降低计算复杂度等。 适合人群:从事电力系统研究、微电网设计与运营的专业人士,尤其是那些对风光不确定性建模感兴趣的研究者和技术人员。 使用场景及目标:适用于需要评估和优化含有大量间歇性可再生能源接入的微电网系统,旨在提高系统的经济性和稳定性,确保在面对风光出力波动时仍能维持正常运作。 其他说明:文中提到的方法不仅有助于学术研究,也可应用于实际工程项目中,帮助工程师们制定更为稳健的微电网调度计划。同时,文中提供的代码片段可供读者参考并应用于类似的问题情境中。
linux之用户管理教程.md
内容概要:本文详细介绍了如何利用组态王和西门子S7-200 PLC构建六层或八层电梯控制系统。首先进行合理的IO地址分配,明确输入输出信号的功能及其对应的物理地址。接着深入解析了PLC源代码的关键部分,涵盖初始化、呼叫处理、电梯运行逻辑和平层处理等方面。此外,提供了组态王源代码用于实现动画仿真,展示了电梯轿厢的画面创建及动画连接方法。最后附上了详细的电气原理图和布局图,帮助理解和实施整个系统架构。 适合人群:从事工业自动化控制领域的工程师和技术人员,尤其是对PLC编程和人机界面开发感兴趣的从业者。 使用场景及目标:适用于教学培训、工程项目实践以及研究开发等场合。旨在为相关人员提供一个完整的电梯控制系统设计方案,便于他们掌握PLC编程技巧、熟悉组态软件的应用,并能够独立完成类似项目的开发。 其他说明:文中不仅包含了理论知识讲解,还分享了许多实际操作经验,如解决编码器丢脉冲的问题、优化平层停车精度的方法等。同时强调了安全性和可靠性方面的考虑,例如设置了多重保护机制以确保系统稳定运行。
在工业生产和设备运行过程中,滚动轴承故障、变压器油气故障等领域的数据分类与故障诊断至关重要。准确的数据分类与故障诊断能够及时发现设备潜在问题,避免故障恶化导致的生产事故与经济损失。LSTM能够捕获时序信息,马尔可夫场(MTF)能够一维信号转换为二维特征图,并结合CNN学习空间特征,MTF-1D-2D-CNN-LSTM-Attention模型通过将一维时序信号和二维图像融合,融合不同模态优势,并引入多头自注意力机制提高泛化能力,为数据分类与故障诊断提供了新的思路。实验结果表明,该模型在分类准确率、鲁棒性和泛化能力方面具有显著优势。多模态融合算法凭借其创新点和实验验证的有效性,在滚动轴承故障、变压器油气故障等领域展现出广阔的应用前景,有望推动相关领域故障诊断技术的进一步发展。 关键词:多模态融合;故障诊断;马尔可夫场;卷积神经网络;长短期记忆神经网络 适用平台:Matlab2023版本及以上。实验硬件设备配置如下:选用高性能计算机,搭载i7处理器,以确保数据处理和模型训练的高效性;配备16GB的内存,满足大规模数据加载和模型运算过程中的内存需求;使用高性能显卡,提供强大的并行计算能力,加速深度学习模型的训练过程。实验参数的选择依据多方面因素确定。
内容概要:本文档提供了一个面试模拟的指导框架,旨在为用户提供一个真实的面试体验。文档中的面试官名为Elian,被设定为性格温和冷静且思路清晰的形象,其主要职责是根据用户提供的简历信息和应聘岗位要求,进行一对一的模拟面试。面试官将逐一提出问题,确保每次只提一个问题,并等待候选人的回答结束后再继续下一个问题。面试官需要深入了解应聘岗位的具体要求,包括但不限于业务理解、行业知识、具体技能、专业背景以及项目经历等方面,从而全面评估候选人是否符合岗位需求。此外,文档强调了面试官应在用户主动发起提问后才开始回答,若用户未提供简历,面试官应首先邀请用户提供简历或描述应聘岗位; 适用人群:即将参加面试的求职者,特别是希望提前熟悉面试流程、提升面试技巧的人士; 使用场景及目标:①帮助求职者熟悉面试流程,提高应对实际面试的信心;②通过模拟面试,让求职者能够更好地展示自己的优势,发现自身不足之处并加以改进; 其他说明:此文档为文本格式,用户可以根据文档内容与面试官Elian进行互动,以达到最佳的模拟效果。在整个模拟过程中,用户应尽量真实地回答每一个问题,以便获得最贴近实际情况的反馈。
招聘技巧HR必看如何进行网络招聘和电话邀约.ppt
内容概要:本文详细介绍了利用三菱PLC(特别是FX系列)和组态王软件构建3x3书架式堆垛式立体库的方法。首先阐述了IO分配的原则,明确了输入输出信号的功能,如仓位检测、堆垛机运动控制等。接着深入解析了梯形图编程的具体实现,包括基本的左右移动控制、复杂的自动寻址逻辑,以及确保安全性的限位保护措施。还展示了接线图和原理图的作用,强调了正确的电气连接方式。最后讲解了组态王的画面设计技巧,通过图形化界面实现对立体库的操作和监控。 适用人群:从事自动化仓储系统设计、安装、调试的技术人员,尤其是熟悉三菱PLC和组态王的工程师。 使用场景及目标:适用于需要提高仓库空间利用率的小型仓储环境,旨在帮助技术人员掌握从硬件选型、电路设计到软件编程的全流程技能,最终实现高效稳定的自动化仓储管理。 其他说明:文中提供了多个实用的编程技巧和注意事项,如避免常见错误、优化性能参数等,有助于减少实际应用中的故障率并提升系统的可靠性。
内容概要:本文详细探讨了利用COMSOL进行电弧放电现象的模拟,重点在于采用磁流体方程(MHD)来耦合电磁、热流体和电路等多个物理场。文中介绍了关键的数学模型如磁流体动力学方程、热传导方程以及电路方程,并讨论了求解过程中遇到的技术难题,包括参数敏感性、求解器选择、网格划分等问题。此外,作者分享了许多实践经验,比如如何处理不同物理场之间的相互作用,怎样避免数值不稳定性和提高计算效率。 适用人群:适用于从事电弧放电研究的专业人士,尤其是那些希望通过数值模拟深入了解电弧行为并应用于实际工程项目的人群。 使用场景及目标:①帮助研究人员更好地理解和预测电弧放电过程中的各种物理现象;②为工程师提供优化电气设备设计的方法论支持;③指导使用者正确配置COMSOL软件的相关参数以确保高效稳定的仿真结果。 其他说明:尽管存在较高的计算复杂度和技术挑战,成功的电弧放电仿真能够显著提升对这一重要物理过程的认识水平,并促进相关领域的技术创新和发展。
内容概要:本文详细介绍了如何利用粒子群优化算法(PSO)改进极限学习机(KELM),以提升其在多维输入单维输出数据处理任务中的性能。首先简述了KELM的工作原理及其快速训练的特点,接着深入探讨了PSO算法的机制,包括粒子的速度和位置更新规则。然后展示了如何将PSO应用于优化KELM的关键参数,如输入权值和隐含层偏置,并提供了具体的Python代码实现。通过对模拟数据和实际数据集的实验对比,证明了PSO优化后的KELM在预测精度上有显著提升,尤其是在处理复杂数据时表现出色。 适合人群:对机器学习尤其是深度学习有一定了解的研究人员和技术爱好者,以及从事数据分析工作的专业人士。 使用场景及目标:适用于需要高效处理多维输入单维输出数据的任务,如时间序列预测、回归分析等。主要目标是通过优化模型参数,提高预测准确性并减少人工调参的时间成本。 其他说明:文中不仅给出了详细的理论解释,还附上了完整的代码示例,便于读者理解和实践。此外,还讨论了一些实用技巧,如参数选择、数据预处理等,有助于解决实际应用中的常见问题。
内容概要:本文介绍了利用粒子群算法(PSO)解决微网优化调度问题的方法。主要内容涵盖微网系统的组成(风力、光伏、储能、燃气轮机、柴油机)、需求响应机制、储能SOC约束处理及粒子群算法的具体实现。文中详细描述了目标函数的设计,包括发电成本、启停成本、需求响应惩罚项和SOC连续性惩罚项的计算方法。同时,阐述了粒子群算法的核心迭代逻辑及其参数调整策略,如惯性权重的线性递减策略。此外,还讨论了代码调试过程中遇到的问题及解决方案,并展示了仿真结果,证明了模型的有效性和优越性。 适合人群:从事电力系统优化、智能算法应用的研究人员和技术人员,特别是对微网调度感兴趣的读者。 使用场景及目标:适用于研究和开发微网优化调度系统,旨在提高供电稳定性的同时降低成本。具体应用场景包括但不限于分布式能源管理、工业园区能源调度等。目标是通过合理的调度策略,使微网系统在满足需求响应的前提下,实现经济效益最大化。 其他说明:本文提供的Matlab程序具有良好的模块化设计,便于扩展和维护。建议读者在理解和掌握基本原理的基础上,结合实际情况进行改进和创新。
KUKA机器人相关资料
基于多智能体的高层建筑分阶段火灾疏散仿 真及策略研究.pdf