`

如何预测用户query意图

 
阅读更多

有一个朋友问,一个用户搜索一个query是“百度”,怎么知道用户真正是想找什么呢。

我回答说,分析之前搜索这个query的用户点了些什么结果啊。

朋友继续问,如果没有用户点击呢。

呃,如果没有点击,这个问题就比较复杂了。整理了下思路,于是写成了本文。主要描述了关于如何预测用户query意图。希望会有所帮助。

首先我们的明确一个标准,如何判断我们对用户意图的猜测是正确的?

用户的思维是很发散的,也许今天搜索“葛优”,是想找“让子弹飞”,明天搜索相同的query,就是想找“非诚勿扰”。 我们确定了要在某个方面的query预测上做一个改进,那么我们首先的把标准定下来,依照这个标准来进行改进。

现在有很多对搜索系统的评价指标,如pv,ipv,ctr,搜索引导的后续转化率等可以量化的指标,这些指标是对搜索系统总体的评价。具体到用户意图预测上,标准很难确定,对于排序比较直观的就是进行side by side的评测,比较原有的效果和改进的效果,看是否会排序更优;对于导航,那我们可以看我们预测的类目和用户实际点的类目的占比,是否能有效降低用户点击非推荐类目的比率。

接下来,我们从2种情况下来回答这个问题,

如果我们已经有了一套完整的系统,有大量的用户访问

先从简单的说起,假设我们已经有了一个完整的搜索系统,有大量的用户访问,我们希望通过对用户query的预测来提高搜索体验。这样的系统的大概架构如下。

包括图所示的几个部分,

1 前端(f2e)

前端负责直接和用户进行交换,当收到用户搜索请求之后,往后端系统传递请求,并接收搜索引擎返回的结果,组织到网页上,展示给用户。

前端还肩负着一个重要的记录日志的工作,这个日志的记录,并不是apache的访问日志,这样的日志内容过于简单。如果要前端记录过多的日志,又会给服务器带来不小的压力。所以目前主要的手段是通过用户在页面上进行搜索或点击等行为时,调用javascript向指定的日志服务器,发送特征url来记录,这种url不会返回内容,仅仅为了给日志服务器添加记录。发送的url会包括从cookie中解析出的用户特有的数据。

2 Query处理

Query处理是线上服务系统,它是对用户意图进行预测后,对用户的搜索结果进行改进。在接收到前端的请求之后,会利用线下对query分析得到的数据,对用户的query和上下文环境进行分析,附加更多的条件到搜索引擎的请求命令之中。常见的Query处理,会有以下的一些类容,query改写,query分类预测,query的导航等。

Query处理这部分主要的意义在于,将用户的搜索query,翻译为对搜索引擎更适合查询串。在大多数情况下,用户使用搜索引擎是为了解决自己的问题,如果能直接获得答案,用户是不大愿意进行搜索的。

用户也许的问题是,“非诚勿扰2里面说的廖凡是谁”这样的一个问题,这样的问题直接搜索是不太会有会令用户比较满意的答案,(除非有向百度知道这样的系统已经存在了类似的问题)。有些用户就会考虑换个关键词试试,搜索下“廖凡”,看是否会有一些答案可以让自己满意。所以很大程度上是搜索引擎在教用户如何使用自己。但是并非所有的用户都对搜索系统如此的熟悉,那我们就需要考虑看看在我们搜索的结果里面效果不太好的query,分析它是怎么构成的。我们也许无法准确回答“非诚勿扰2里面说的廖凡是谁”,但是可以把其中最关键的信息抽取出来“非诚勿扰2”“廖凡”,并且,我们需要回答“是谁”这样的疑问问题。把这些信息传递给引擎,才会有更好的结果。

再例如,用户想找,“1000元左右的手机”,那么对于淘宝来说,可以把搜索的条件转化为800-1200价格限制范围的,手机类目下的宝贝,或者更进一步,把各种型号的手机,列在一起,进行参数的比较。

再深入一步,用户想找“舒淇在非诚勿扰2中用的手机”,如果我们可以把这个问题转化为对“朵唯S920”的搜索,那就是非常非常好的效果了,至于这个query如何对应到这个结果,也许后面的一些分析,能提供一些线索。

具体的实现,可以参考下面几点,

对query的线上处理,如果是较为hot的query,可以以查表为主,可以用hash表,trie树等进行查表,把在线下计算好的数据,通过查表的方式找到对应的结果,附加到给引擎的搜索条件上,并返回。

另外,可以把线下训练好的模型,在线上进行预测,一般的分类算法预测速度都比较快。可以对长尾的query,进行及时的预测。

也可以做一些规则,如我们上面举的例子,“1000元左右”,可以通过正则表达式进行识别,将其转为对应的搜索条件。这些规则如何来定呢,这是比较麻烦的一点,像这类的query,肯定是pv比较低的,属于长尾的query,这些query效果提升可能比较明显,但是对总体搜索系统效果影响会较小。这个问题比较尴尬,如果我们这类query处理的效果好的话,那用户会使用的更多;用户知道了这样的query效果不好,所以就换成了效果好的query。如果要做好规则,那就把长尾的这些query都拿出来,多看看,分下类,再结合实际的问题分类,总结出一些通用的规则,来进行优化。

3 搜索引擎

搜索引擎主要负责检索和排序,一般由一些倒排表和正排表组成。倒排表用于查找对应的文档id,能快速的检索出命中query的文档,在根据正排表来查对应id的数据。

一般将需要字符串类型的文档字段作为倒排表来进行检索,字符型的字段可以放在正排表中,在通过倒排表找到了满足条件的文档,再在正排表中进行过滤。

找到满足条件的文档后,再进行过滤,统计,并根据排序参数进行排序。

排序分为2个部分,一部分是文档自身的静态分,每个文档会有类似pagerank这样分数,另外一部分是还有和query相关的部分,会计算文档和query的关系,例如,query中出现的词的在文档中是否距离较近,query是否为文档的中心词。

4 日志存储

日志存储系统收集前端记录的日志,存储在数据仓库中,解析后用分布式文件系统来存放。有几类日志比较重要,

A、 搜索日志,搜索日志一般会包括以下一些信息,用户id,session id,用户搜索query,用户当前搜索的分类,用户搜索时间,

B、 点击日志,用户id,session id,用户搜索query,用户当前搜索的分类,用户点击的item,用户点击时间

C、 当然可能还有其他的如交易记录等,

有了以上几个部分之后,我们就可以通过以下2个部分来进行用户意图的预测,

5 统计分析

日志分析主要是一种统计分析,数据源来自于访问日志。另外还可以分析数据库中存储的用户的购买,收藏等行为。

可以从日志中分析出用户搜索query,“nike”最想找的是运动鞋呢,还是运动服。

常用的应用有下拉提示,相关搜索等,

下拉推荐是一种比较常用的用户意图分析的系统,通常是统计日志中,表现比较好的query,将这些query按照pv和数据表现等指标进行排序,然后把query转化为英文和中文对应的前缀,把相同前缀的建成统一索引,在用户输入关键词后,推荐相应的query。

相关搜索是更为常用的用户意图分析,一般通过关联规则(Apriori,FP-growth),统计同一sesion中,用户经常出现的相关的query,比如,可以发现同一个session里面搜索了nike的用户,很多都搜索了“nike dunk”这样的信息,我们就可以再搜索结果中进行改进。这一算法可以大量应用于数据挖掘。推广开去,我们要找某个类目下进行了购买的用户,还希望购买些什么类目的东西;看了一本书的用户,还会看什么书;搜索了一个“长款”属性,是否还希望“修身”这样的属性。

在往下深入,我们可以分析用户历史行为,进行个性化的预测。比如分析用户性别,喜好,来进行分类,推荐。

6 机器学习

统计的算法也是机器学习的一种,如果用户行为数据足够多,那直接使用统计分析应该是可以解决大部分问题。剩下的小部分问题是可以交给机器学习其他算法来完成。

举一个简单的例子来说明,用户搜索“nike”和“羽绒服”比较多,有了足够多的统计数据,我们知道“nike”对应的是运动鞋,运动服等。“羽绒服”对应的是服装。但是用户搜索“红色的nike羽绒服”次数很少,没有足够多的数据,我们统计到的结果也许是不准确的,偏差较大。

那我们可以将较好的数据进行训练,并对长尾的query进行分类预测。这里的训练数据的特征是用户query中每个词,词出现对应这一种分类。

训练数据的选择是分类算法最重要的一步,一般对文本的分类预测,可以使用信息增益,卡方,互信息等来作为训练特征。具体问题具体分析,例如使用loglinear算法进行预测,实验证明信息增益来作为特征选择会更加有效,另外也得分析应用的场景,根据需要来选择算法,选择特征,法无定法,对于淘宝的数据来说,用于搜索的限于宝贝的标题,非常的短,直接使用用一般的网页分类算法是不太可行的,所以,数据不一样,方法就不一样,重要的是了解数据,了解方法的原理。机器学习不是万能的,不能靠运气。By the way,建议读下元函的Treelink算法介绍(http://www.searchtb.com/2010/12/an-introduction-to-treelink.html),写的挺好的。

分好类后,对每个类中的文档的排序也可以通过机器学习来进行,如果每个文档有很多标准的特征,每个维度的特征有一定的分数。这个也可以通过机器学习的方法来进行好中坏分档,或者找出线性加权的最优化参数。

假设我们没有用户反馈数据

我们首先可以做的是把文档的自身的相关性做好,回到最开始的那个问题,一个用户搜索一个query是“百度”,怎么知道用户真正是想找什么呢。

先我们至少可以把文档按分词后的结果和query进行比较,文档中如果是“众里寻他千百度”这样的就可以过滤掉了,因为“千百度”和“百度”还是有一些区别的。这是从文档自有的相关性上来进行优化。

接下来,我们看这个文档是不是描述文档的,比如文档里面是讲“非诚勿扰2”的,里面提到“廖凡,如果你不知道廖凡是谁,请百度一下”,那么这种文档不是描述“百度”这个词的,而是描述“非诚勿扰2的”,我们可以通过给文档进行分类或者加上tag,来表示他的主题词,这样,这类的文档也可以过滤掉。

我们再讨论下如果进行分类,在有用户数据的时候,我们可以用用户的行为来作为文档分类的结果;没有的情况下,我们可以进行人为的标注,当然这部分工作量巨大。另外可能可行的是,在结构化比较好的数据里面,找到关键的字段进行分类,例如,品牌+产品型号,这样的字段作为聚类的关键key,把文档分为很多类。如果结构化不是很好,可以考虑用crf算法来抽取其中的关键字段进行聚类。同时把query对文档的直接搜索转化为对不同类文档的搜索。那么这时候,我们已经把搜索的所有文档进行了聚类,发现“朵唯S920”手机的描述中,常会出现“舒淇在非诚勿扰2中使用”这样的描述,是否就可以考虑把两者联系在一起了呢。

分享到:
评论

相关推荐

    亚马逊搜索意图识别

    亚马逊搜索意图识别是亚马逊搜索引擎背后的核心技术之一,它主要通过理解用户的搜索查询(Query),从而识别出用户的真正搜索意图,帮助用户快速找到所需商品。在搜索意图识别的过程中,需要面对许多挑战,例如查询...

    3-1+Query+理解和语义召回在知乎搜索中的应用.pdf

    Query 理解是指对用户输入的Query进行语义分析和理解,以确定用户的搜索意图。语义召回则是指根据用户的搜索意图,召回相关的文档或结果。在知乎搜索中,Query 理解和语义召回技术被用于实现 Term Weight、同义词...

    5-2+智能语音交互中的无效query识别.pdf

    即使ASR正确识别了语音,但如果没有正确理解用户的真实意图,也会产生无效query。为此,需要构建强大的自然语言处理(Natural Language Processing,NLP)模型,对识别出的文本进行深入分析,识别潜在的语法错误、...

    基于用户搜索行为的query-doc关联挖掘

    总结而言,基于用户搜索行为的query-doc关联挖掘是一个多学科交叉的领域,它结合了数据挖掘、机器学习、网络分析和用户行为分析等多种技术,旨在深入理解用户意图,并提供更加精准和丰富的搜索结果,提升搜索引擎的...

    Understanding User’s Query Intent with Wikipedia

    通过准确地识别出用户的查询意图,搜索引擎可以将查询定向到最适合的垂直搜索领域,从而提供更精确、更相关的搜索结果,进而显著提升用户体验。 ### 知识点二:查询意图分类问题的主要挑战 #### 1. 意图表示...

    搜索中的Query理解及应用.pdf

    然后,通过语义分析理解query的深层含义,例如识别用户的意图,可能是寻找信息、解决问题或是购买商品。这一过程可能还包括query改写,将用户的非标准或模糊表达转换为更精确的形式,以便匹配数据库中的内容。 检索...

    聊天机器人意图识别机器人.zip

    每个样本通常由两部分组成:用户输入的文本(query)和对应的意图类别(intent label)。通过大量训练,模型能学习到不同意图的特征模式,从而在实际对话中准确识别用户的意图。 四、数据预处理与模型构建 在利用...

    Cool Query

    创作意图: 由于查询分析器对用户的管理非常不方便,为此特编写该程序 方便经常用查询分析器的程序员以不同用户来调试程序。 运行平台: Windows9.X,Windows2000 创作工具: Delphi 6.0(Build 6.190) 历史...

    搜索中的Query理解及应用.rar

    3. **语法和句法分析**:识别查询中的结构和关系,例如主谓宾等成分,有助于理解用户的意图。 4. **语义理解**:深入理解查询背后的含义,例如识别出隐含的实体、概念或关系。 自然语言处理(NLP)技术在这过程中起...

    基于大数据的查询意图识别.pptx

    查询意图推断是查询意图识别技术中的一种重要步骤,该步骤可以将 query 的意图识别变为一个大规模多分类问题。候选分类概念和拒绝分类结果是查询意图推断中的关键步骤。候选概念的发现和拒绝项是查询意图推断中的...

    Analysis of a Very Large Web Search Engine Query Log

    10. 对信息检索技术的挑战:网络用户的行为模式对传统的信息检索技术提出了挑战,需要搜索技术研究人员和工程师针对这些新发现的用户行为特点,开发新的算法和模型来提升搜索引擎的性能和用户体验。

    ACL2020 - 线上搜索结果大幅提升!亚马逊提出对抗式query-doc相关性模型.rar

    通过对query和doc的对抗式学习,模型能够更好地理解和适应用户的查询意图,为用户提供更准确、更符合需求的搜索结果。这一创新不仅有助于提高用户的满意度,也有助于推动整个信息检索领域的技术进步。

    query-clarification-data

    机器学习算法,如决策树、随机森林、神经网络等,可能会被用于预测用户对澄清提示的反应,并持续优化澄清策略。 总的来说,"query-clarification-data"项目是一个深入研究用户查询行为、提升医疗搜索体验的宝贵资源...

    mysql_Query优化

    当用户提交一个 SQL 查询时,MySQL 首先通过解析器将查询转化为抽象语法树 (Abstract Syntax Tree, AST),然后由 Query Optimizer 分析这个 AST 并生成一个或多个可能的执行计划。最终,Optimizer 会选择成本最低的...

    Query理解和语义召回在知乎搜索中的应用(20页).pdf

    这种技术利用大量的训练语料,如Query到Query的共同点击数据,来生成更加符合用户意图的改写版本。 语义召回则是利用Query Embedding和向量索引来实现,将查询和文档转换为高维向量,然后通过相似度计算来找出语义...

    query Segmentation

    它旨在将一个完整的查询语句分解成更小、更具意义的部分,以便更好地理解用户的意图,从而提供更精确的搜索结果或服务。这个过程通常涉及自然语言处理(NLP)、信息检索和机器学习技术。 标题"query Segmentation...

    查询分类,查询意图识别

    然而,由于用户的查询通常很短且含糊不清,如何准确地理解用户的查询意图并提供相关的搜索结果成为了一个挑战。为了解决这个问题,本文介绍了一种新的技术——查询增强(query enrichment),该技术能够有效地将短小且...

    B2B电商用户增长实践(16页).pdf

    6. **搜索**:搜索是用户最直接表达意图的方式,其优化涉及Query分类、文本匹配、行为匹配、Query改写、语言模型、同义词扩展、seq2seq召回、Term召回、语义召回和图像召回等技术。通过Graph-based sequence ...

Global site tag (gtag.js) - Google Analytics