`
江南白衣
  • 浏览: 554916 次
  • 来自: 广州
社区版块
存档分类
最新评论

编写对GC友好,又不泄漏的代码

阅读更多

   作者:江南白衣,最新版链接:http://blog.csdn.net/calvinxiu/archive/2007/05/22/1621051.aspx,版权所有,转载请保留原文链接。

    看到JavaOne2007上有篇《Garbage-Collection-Friendly Programming》的68页PPT,心想都2007了还谈这个基本问题,一定总结得很全面了才好意思站出来讲吧。    

GC的基础概念见上篇:JDK5.0垃圾收集优化之--Don't Pause  

1.使用更多生命周期短的、小的、不改变指向(immutable)的对象,编写清晰的代码。

    出于懒惰也好,朴素的节俭意识也好,我们都习惯对一个变量重用再重用。但是....

  • Java的垃圾收集器喜欢短生命周期的对象,对象如果在新生代内,在垃圾收集发生前就死掉了,垃圾收集器就什么都不用做了。
  • 现代JVM构建一个新对象只需要10个本地CPU指令,并不弱于C/C++。 (但垃圾收集没有压缩算法时会稍慢,更频繁的New对象也导致更频繁的GC)。
  • 大对象的分配效率更低,而且对非压缩算法的垃圾收集器,更容易造成碎片。
  • 对象重用增加了代码的复杂度,降低了可读性。

   所以有标题的呼吁,比如不要害怕为中间结果分配小对象。但编程习惯的改变也不是一朝一夕的事情。

2.将用完的对象设为NULL其实没什么作用。

    貌似很酷的把对象主动设为Null 的"好习惯"其实没什么用,JIT Compiler会自动分析local变量的生命周期。
    只有一个例外情况,就是String[1024] foo 这种赤裸裸的数组,你需要主动的foo[100]=null释放第100号元素,所以最好还是直接用ArrayList这些标准库算了。

 

3.避免显式GC--System.gc()。

    大家都知道System.gc()不好,full-gc浪费巨大,gc的时机把握不一定对等等,甚至有-XX:+DisableExplicitGC的JVM参数来禁止它。

    哈哈,但我还不会用System.gc()呢,不怕不怕。真的不怕吗?

  • 先用FindBugs 查一下所用到的全部第三方类库吧...
  • 至少RMI 就会老实不客气的执行System.gc()来实现分布式GC算法。但我也不会用RMI啊。那EJB呢,EJB可是建在RMI上的....

    如果无可避免,用-Dsun.rmi.dgc.client.gcInterval=3600000 -Dsun.rmi.dgc.server.gcInterval=3600000 (单位为微妙) 增大大GC的间隔(原默认值为1分钟),-XX:+ExplicitGCInvokesConcurrent 让System.gc() 也CMS并发执行。

 

4.继续千夫所指的finalize()

    大家也都知道finalize()不好,分配代价昂贵,释放代价更昂贵(要多走一个循环,而且他们死得慢,和他们相关联的对象也跟着死得慢了),又不确定能否被调用(JVM开始关闭时,就不会再进行垃圾收集),又不确定何时被调用(GC时间不定,即使system.gc()也只是提醒而不是强迫GC,又不确定以什么样的顺序调用,所以finalize不是C++的析构函数,也不像C++的析构函数。

   我们都知道啊,所以我从来都没使用。都是在显式的维护那些外部资源,比如在finally{}里释放。

 

5.WeakReference/SoftReference

   这是个平时不怎么会搭理,偶然知道了又觉得有用的Java特征。大家都知道Java里所有对象除int等基本类型外,都是Pass by Reference的指针,实例只要被一个对象连着,就不会被收集。
    而WeakReference就是真正意义上的C++指针,只是单纯的指向一个对象,而不会影响对象的引用计数。
    而SoftReference更特别,在内存足够时,对象会因为SoftReference的存在而不被收集,但内存不足时,对象就还是会被收集,怎么看都是做简单缓存的料子。代码如下:

  Foo foo = new Foo(); 
  SoftReference sr
= new SoftReference(foo); 
  Foo bar 
=  sr.get(); 

  如果foo已被垃圾收集,sr.get()会返回Null;

  另外还有一个ReferenceQueue的机制,使得对象被回收时能获得通知,比finalize()完全不知道GC何时会执行要聪明的多。

  ReferenceQueue rq = new ReferenceQueue();
  ref 
= new WeakReference(foo, rq); 
  WeakReference cleaned 
= rq.pool(); 

  cleaned就是刚刚被GC掉的WeakReference。

6.内存泄漏

   java 不是有垃圾收集器了吗?怎么还泄漏啊,唬我啊??
   嗯,此泄漏非比泄漏。C/C++的泄漏,是对象已不可到达,而内存又没有回收,真正的内存黑洞。
   而Java的泄漏,则是因为各种原因,对象对应用已经无用,但一直被持有,一直可到达。
   总结原因无外乎几方面:

  1. 被生命周期极长的集合类不当持有,号称是Java内存泄漏的首因。
    这些集合类的生命周期通常极长,而且是一个辅助管理性质的对象,在一个业务事务运行完后,如果没有将某个业务对象主动的从中清除的话,这个集合就会吃越来越多内存,可以用WeakReference,如WeakHashMap,使得它持有的对象不增加对象的引用数。
  2. Scope定义不对,这个很简单了,方法的局部变量定义成类的变量,类的静态变量等。
  3. 异常时没有加finally{}来释放某些资源,JDBC时代也是很普遍的事情。
  4. 另外一些我了解不深的原因,如:Swing里的Listener没有显式remove;内部类持有外部对象的隐式引用;Finalizers造成关联对象没有被及时清空等。

内存泄漏的检测

有不少工具辅助做这个事情的,如果手上一个工具也没有,可以用JDK自带的小工具:

  • 看看谁占满了Heap?
    用JDK6的jmap可以显示运行程序中对象的类型,个数与所占的大小
    先用jps 找到进程号,然后jmap -histo pid 显示或 jmap -dump:file=heap_file_name pid 导出heap文件
  • 为什么这些对象仍然可以到达?
    用jhat(Java Heap Analysis Tool) 分析刚才导出的heap文件。
    先jhat heap_file_name,然后打开浏览器http://localhost:7000/ 浏览。


 

分享到:
评论
2 楼 moshalanye 2013-11-14  
不是没人顶,而是江南白衣  是SpringSide的创始人,CSDN VIP会员。
02,03年 就能看到 江南白衣,竹笋炒肉,robbin 这些前辈在IT活跃的身影了。

多少人管住他了围脖,还需要顶?
1 楼 Wuaner 2012-08-28  
这么好的文章, 没人顶?!
引用
6.内存泄漏
   java 不是有垃圾收集器了吗?怎么还泄漏啊,唬我啊??
   嗯,此泄漏非比泄漏。C/C++的泄漏,是对象已不可到达,而内存又没有回收,真正的内存黑洞。
   而Java的泄漏,则是因为各种原因,对象对应用已经无用,但一直被持有,一直可到达。
   总结原因无外乎几方面:
被生命周期极长的集合类不当持有,号称是Java内存泄漏的首因。
这些集合类的生命周期通常极长,而且是一个辅助管理性质的对象,在一个业务事务运行完后,如果没有将某个业务对象主动的从中清除的话,这个集合就会吃越来越多内存,可以用WeakReference,如WeakHashMap,使得它持有的对象不增加对象的引用数。
Scope定义不对,这个很简单了,方法的局部变量定义成类的变量,类的静态变量等。
异常时没有加finally{}来释放某些资源,JDBC时代也是很普遍的事情。
另外一些我了解不深的原因,如:Swing里的Listener没有显式remove;内部类持有外部对象的隐式引用;Finalizers造成关联对象没有被及时清空等。

相关推荐

    spring-ai-spring-boot-autoconfigure-1.0.0-M5.jar中文文档.zip

    # 【spring-ai-spring-boot-autoconfigure-***.jar中文文档.zip】 中包含: 中文文档:【spring-ai-spring-boot-autoconfigure-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【spring-ai-spring-boot-autoconfigure-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-spring-boot-autoconfigure-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-spring-boot-autoconfigure-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-spring-boot-autoconfigure-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-spring-boot-autoconfigure-***.jar中文文档.zip,java,spring-ai-spring-boot-autoconfigure-***.jar,org.springframework.ai,spring-ai-spring-boot-autoconfigure,***,org.springframework.ai.autoconfigure.anthropic,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,springframework,spring,ai,boot,autoconfigure,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【spring-ai-spring-boot-autoconfigure-***.jar中文文档.zip】,再解压其中的 【spring-ai-spring-boot-autoconfigure-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-spring-boot-autoconfigure</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'org.springframework.ai', name: 'spring-ai-spring-boot-autoconfigure', version: '***' Gradle (Short): implementation 'org.springframework.ai:spring-ai-spring-boot-autoconfigure:***' Gradle (Kotlin): implementation("org.springframework.ai:spring-ai-spring-boot-autoconfigure:***") ``` # 含有的 Java package(包): ``` org.springframework.ai.autoconfigure.anthropic org.springframework.ai.autoconfigure.azure.openai org.springframework.ai.autoconfigure.bedrock org.springframework.ai.autoconfigure.bedrock.anthropic org.springframework.ai.autoconfigure.bedrock.anthropic3

    50页-道路环卫保洁服务项目管理计划方案.pdf

    在当今智慧城市的建设浪潮中,智慧环卫作为城市管理的重要组成部分,正以其独特的魅力引领着环卫行业的变革。本方案旨在通过一系列高科技手段,如物联网、大数据、云计算等,全面提升环卫作业效率与管理水平,为城市居民创造更加清洁、宜居的生活环境。 一、智慧环卫系统概述与核心亮点 智慧环卫系统是一个集机械化保洁、垃圾清运、设施管理、事件指挥调度等多功能于一体的综合性管理平台。其核心亮点在于通过高精度定位、实时监控与智能分析,实现环卫作业的精细化管理。例如,机械化保洁管理子系统能够实时监控机扫车、洒水车等作业车辆的运行状态,自动规划最优作业路线,并根据作业完成情况生成考核评价报表,极大地提高了作业效率与服务质量。同时,垃圾清运管理子系统则通过安装GPS定位设备和油量传感器,对清运车辆进行全方位监控,确保垃圾清运过程的规范与高效,有效解决了城市垃圾堆积与随意倾倒的问题。此外,系统还配备了垃圾箱满溢报警系统,通过智能感应技术,当垃圾箱内垃圾达到预设高度时自动报警,提醒作业人员及时清运,避免了因垃圾满溢而引发的居民投诉与环境污染。 二、智慧环卫系统的趣味性与知识性融合 智慧环卫系统不仅实用性强,还蕴含着丰富的趣味性与知识性。以餐厨垃圾收运管理子系统为例,该系统通过为餐厨垃圾收运车辆安装GPS定位、车载称重、视频监控等多种感知设备,实现了对餐厨垃圾收运过程的全程监控与智能管理。作业人员可以通过手机APP实时查看车辆位置、行驶轨迹及收运情况,仿佛在玩一场现实版的“垃圾追踪游戏”。同时,系统还能自动生成餐厨垃圾收运统计报表,帮助管理人员轻松掌握收运量、违规情况等关键数据,让数据管理变得既科学又有趣。此外,中转站视频监控子系统更是将趣味性与实用性完美结合,通过高清摄像头与双向语音对讲功能,实现了对中转站内外环境的实时监控与远程指挥,让管理人员足不出户就能掌控全局,仿佛拥有了一双“千里眼”和一对“顺风耳”。 三、智慧环卫系统的未来展望与社会价值 随着科技的不断进步与智慧城市建设的深入推进,智慧环卫系统将迎来更加广阔的发展前景。未来,智慧环卫系统将更加注重数据的深度挖掘与分析,通过大数据与人工智能技术,为城市环卫管理提供更加精准、高效的决策支持。同时,系统还将加强与其他城市管理系统的互联互通,实现资源共享与协同作战,共同推动城市管理的智能化、精细化水平。从社会价值来看,智慧环卫系统的推广与应用将有效提升城市环境卫生质量,改善居民生活环境,提升城市形象与竞争力。此外,系统还能通过优化作业流程、减少资源浪费等方式,为城市可持续发展贡献重要力量。可以说,智慧环卫系统不仅是城市管理的得力助手,更是推动社会进步与文明发展的重要力量。

    微信小程序驾校管理平台约车小程序demo完整源码下载-完整源码.zip

    微信小程序驾校管理平台约车小程序demo完整源码下载_完整源码

    MATLAB实现含风电不确定性的电力系统低碳调度模型

    内容概要:本文详细介绍了使用MATLAB和YALMIP工具包构建的电力系统低碳调度模型。该模型主要解决风电和负荷不确定性带来的挑战,采用模糊机会约束处理风电预测误差,将复杂的非线性约束转化为混合整数线性规划问题。文中展示了如何通过分段线性化、大M法等技巧提高求解效率,并实现了包括火电、水电、风电、储能等多种能源类型的综合调度。此外,还讨论了碳排放成本、启停时间约束、爬坡率约束以及储能系统的建模方法。最终,通过结果可视化展示各成本构成及其对调度策略的影响。 适合人群:从事电力系统优化研究的专业人士,尤其是熟悉MATLAB编程并希望深入了解低碳调度模型的研究人员和技术人员。 使用场景及目标:适用于需要处理风电不确定性、优化电力系统调度的研究项目。目标是降低电力生产成本的同时减少碳排放,确保电力系统的稳定性和经济性。 其他说明:代码中包含了详细的注释和扩展提示,方便进一步修改与应用。对于大规模电力系统调度问题,提供了高效的求解策略和性能优化建议。

    OFDM、OOK、PPM、QAM 的误码率模拟【绘制不同调制方案的误码率曲线】附Matlab代码.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    my lib1.SCHLIB

    my lib1.SCHLIB

    工控领域西门子PLC动态加密计时催款程序:设备催款与规范验收的技术实现

    内容概要:本文详细介绍了西门子PLC动态加密计时催款程序的设计与实现。该程序旨在解决工控领域中常见的客户拖延付款问题。通过利用PLC的定时器功能和复杂的加密算法,程序能够在设备运行一段时间后自动触发锁机机制,提醒客户按时验收付款。主要内容包括加密计时的核心思路、代码示例与分析、动态加密的具体实现方法以及柔性锁机的应用技巧。此外,文中还提供了具体的SCL代码片段,展示了如何通过时间校验、动态密钥生成和渐进式降速等方式实现灵活的锁机控制。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是负责PLC编程和设备管理的专业人士。 使用场景及目标:适用于设备调试完成后客户拖延付款或拒绝验收的场景。主要目标是通过技术手段保障供应商的合法权益,促进客户按时履约,减少因款项延迟带来的经济损失。 其他说明:文中强调了技术催款并非为了惩罚客户,而是为了建立良好的契约精神。同时,作者分享了一些实用的经验和技巧,如设置合理的调试接口、时间缓冲期和操作提示,确保程序既有效又人性化。

    75页-智慧环卫平台解决方案(2022).pdf

    在当今智慧城市的建设浪潮中,智慧环卫作为城市管理的重要组成部分,正以其独特的魅力引领着环卫行业的变革。本方案旨在通过一系列高科技手段,如物联网、大数据、云计算等,全面提升环卫作业效率与管理水平,为城市居民创造更加清洁、宜居的生活环境。 一、智慧环卫系统概述与核心亮点 智慧环卫系统是一个集机械化保洁、垃圾清运、设施管理、事件指挥调度等多功能于一体的综合性管理平台。其核心亮点在于通过高精度定位、实时监控与智能分析,实现环卫作业的精细化管理。例如,机械化保洁管理子系统能够实时监控机扫车、洒水车等作业车辆的运行状态,自动规划最优作业路线,并根据作业完成情况生成考核评价报表,极大地提高了作业效率与服务质量。同时,垃圾清运管理子系统则通过安装GPS定位设备和油量传感器,对清运车辆进行全方位监控,确保垃圾清运过程的规范与高效,有效解决了城市垃圾堆积与随意倾倒的问题。此外,系统还配备了垃圾箱满溢报警系统,通过智能感应技术,当垃圾箱内垃圾达到预设高度时自动报警,提醒作业人员及时清运,避免了因垃圾满溢而引发的居民投诉与环境污染。 二、智慧环卫系统的趣味性与知识性融合 智慧环卫系统不仅实用性强,还蕴含着丰富的趣味性与知识性。以餐厨垃圾收运管理子系统为例,该系统通过为餐厨垃圾收运车辆安装GPS定位、车载称重、视频监控等多种感知设备,实现了对餐厨垃圾收运过程的全程监控与智能管理。作业人员可以通过手机APP实时查看车辆位置、行驶轨迹及收运情况,仿佛在玩一场现实版的“垃圾追踪游戏”。同时,系统还能自动生成餐厨垃圾收运统计报表,帮助管理人员轻松掌握收运量、违规情况等关键数据,让数据管理变得既科学又有趣。此外,中转站视频监控子系统更是将趣味性与实用性完美结合,通过高清摄像头与双向语音对讲功能,实现了对中转站内外环境的实时监控与远程指挥,让管理人员足不出户就能掌控全局,仿佛拥有了一双“千里眼”和一对“顺风耳”。 三、智慧环卫系统的未来展望与社会价值 随着科技的不断进步与智慧城市建设的深入推进,智慧环卫系统将迎来更加广阔的发展前景。未来,智慧环卫系统将更加注重数据的深度挖掘与分析,通过大数据与人工智能技术,为城市环卫管理提供更加精准、高效的决策支持。同时,系统还将加强与其他城市管理系统的互联互通,实现资源共享与协同作战,共同推动城市管理的智能化、精细化水平。从社会价值来看,智慧环卫系统的推广与应用将有效提升城市环境卫生质量,改善居民生活环境,提升城市形象与竞争力。此外,系统还能通过优化作业流程、减少资源浪费等方式,为城市可持续发展贡献重要力量。可以说,智慧环卫系统不仅是城市管理的得力助手,更是推动社会进步与文明发展的重要力量。

    spring-ai-autoconfigure-vector-store-mongodb-atlas-1.0.0-M7.jar中文-英文对照文档.zip

    # 【spring-ai-autoconfigure-vector-store-mongodb-atlas-1.0.0-M7.jar中文-英文对照文档.zip】 中包含: 中文-英文对照文档:【spring-ai-autoconfigure-vector-store-mongodb-atlas-1.0.0-M7-javadoc-API文档-中文(简体)-英语-对照版.zip】 jar包下载地址:【spring-ai-autoconfigure-vector-store-mongodb-atlas-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-autoconfigure-vector-store-mongodb-atlas-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-autoconfigure-vector-store-mongodb-atlas-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-autoconfigure-vector-store-mongodb-atlas-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-autoconfigure-vector-store-mongodb-atlas-1.0.0-M7.jar中文-英文对照文档.zip,java,spring-ai-autoconfigure-vector-store-mongodb-atlas-1.0.0-M7.jar,org.springframework.ai,spring-ai-auto

    MATLAB多目标粒子群算法优化冷热电联供系统运行成本与能效

    内容概要:本文介绍了利用MATLAB实现多目标粒子群算法(MOPSO),用于优化冷热电联供(CCHP)系统的运行。文中详细描述了系统架构,包括燃气轮机、电制冷机、锅炉以及风光机组等设备的协同工作。通过引入多目标优化,同时追求最低运行成本和最高综合能效。算法实现了自适应惯性权重调整、动态边界处理、非支配排序等关键技术,显著提升了优化性能。实验结果显示,相比传统方案,该方法能够节省15%以上的运营成本,并提高系统能效23.7%,减少碳排放18.2%。 适用人群:从事能源管理、电力系统优化的研究人员和技术人员,尤其是对MATLAB编程有一定基础的人士。 使用场景及目标:适用于需要进行冷热电联供系统优化的企业或研究机构,旨在寻找成本与能效之间的最佳平衡点,提供多种可供选择的优化方案,帮助决策者制定合理的运行策略。 其他说明:代码设计注重实用性,包含详细的注释和模块化的文件结构,便于理解和修改。此外,还提供了24小时调度结果的三维可视化展示,直观地反映了不同目标间的权衡关系。

    【医疗影像分析】深度学习技术在医学影像诊断中的多维度优势及典型应用:从自动特征提取到临床价值创造

    内容概要:深度学习在医疗影像分析中展现出多维度的优势。首先,它能够自动特征提取并高效学习,通过多层神经网络自动识别医学影像中的复杂特征,无需人工干预,并能整合多种模态的数据,如CT、MRI、X光等,结合患者其他信息建立更全面的诊断模型。其次,在高精度诊断与效率提升方面,深度学习模型在多个任务中的准确率普遍超过90%,基于GPU加速的模型还能实现快速影像分析。第三,其具有复杂的场景适应性与创新应用,可以进行精准分割、三维重建以及长尾问题与罕见病的识别。第四,从临床价值来看,它减轻了医生的工作负担,促进了医疗资源的公平化。最后,深度学习还具有良好的可扩展性,支持跨学科研究,开源生态也有助于标准化建设。尽管存在数据标注依赖、模型可解释性和计算资源限制等问题,但深度学习的应用正逐步从辅助诊断向精准治疗、预后预测等全流程渗透。 适合人群:医疗影像研究人员、临床医生、AI医疗从业者。 使用场景及目标:①了解深度学习在医疗影像分析中的具体优势和技术细节;②探索深度学习应用于医疗影像分析的新思路和新方法;③评估深度学习技术在实际临床环境中的可行性。 其他说明:深度学习虽然具有诸多优势,但在实际应用中还需考虑数据标注质量、模型可解释性和计算资源等因素,同时应关注技术创新与伦理规范的平衡。

    塘沽市民滨海旅游与生态意识的调查报告.doc

    塘沽市民滨海旅游与生态意识的调查报告.doc

    spring-ai-mcp-1.0.0-M6.jar中文文档.zip

    # 压缩文件中包含: 中文文档 jar包下载地址 Maven依赖 Gradle依赖 源代码下载地址 # 本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件;

    UDQsinepwm_1p_UPFC.png

    UDQsinepwm_1p_UPFC

    spring-ai-zhipuai-1.0.0-M6.jar中文文档.zip

    # 压缩文件中包含: 中文文档 jar包下载地址 Maven依赖 Gradle依赖 源代码下载地址 # 本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件;

    3dmax插件LMExporter.ms

    3dmax插件LMExporter

    基于MATLAB的多目标遗传算法在分布式电源选址定容中的应用与优化

    内容概要:本文详细介绍了利用MATLAB实现多目标遗传算法(MOGA)解决分布式电源选址定容问题的方法。首先,通过建立33节点配电网模型,采用稀疏矩阵表示线路连接关系,简化了存储结构。接着定义了三个主要目标函数:降低网损、减少总容量成本以及提高电压稳定性。为了加快算法收敛速度,在种群初始化时引入了定向变异策略,并在交叉变异过程中加入局部搜索。此外,针对不同场景采用了前推回代法和牛顿拉夫逊法相结合的潮流计算方法,确保计算精度的同时提高了效率。最后,通过Pareto前沿曲线展示了多种可行解之间的权衡关系,帮助决策者根据实际情况做出最佳选择。 适用人群:从事电力系统规划、分布式能源管理和智能电网研究的专业人士和技术爱好者。 使用场景及目标:适用于需要综合考虑电网损耗、投资成本和电压稳定性的分布式电源选址定容项目。旨在寻找最优的电源安装位置及其容量配置方案,从而提升整个配电系统的性能。 其他说明:文中提到的技术细节如稀疏矩阵的应用、混合潮流计算方法等对于提高算法效率至关重要;而Pareto前沿曲线则有助于直观地理解和比较不同的设计方案。

    【误差自适应跟踪方法AUV】自适应跟踪(EAT)方法研究附Matlab代码&Simulin.rar

    1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

    spring-ai-mongodb-atlas-store-1.0.0-M5.jar中文文档.zip

    # 压缩文件中包含: 中文文档 jar包下载地址 Maven依赖 Gradle依赖 源代码下载地址 # 本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件;

    COMSOL软件中永磁体磁场分布仿真的详细指南与技巧

    内容概要:本文深入探讨了使用COMSOL进行永磁体磁场分布仿真的方法和技术要点。首先介绍了永磁体的基本建模步骤,强调了磁化方向、材料参数和边界条件设置的重要性。接着讨论了网格划分的技巧,特别是在磁场变化剧烈区域的手动加密方法。然后讲解了仿真后的数据处理和可视化手段,如切片图、箭头图和流线图的应用。此外,文中还分享了一些常见的错误及其解决办法,以及如何通过参数化扫描优化仿真结果。最后,作者通过具体案例展示了如何利用COMSOL进行复杂磁场分布的模拟,并提供了多个实用的代码片段。 适合人群:从事电磁场仿真工作的科研人员、工程师及研究生。 使用场景及目标:帮助用户掌握COMSOL中永磁体磁场仿真的全流程,提高仿真的准确性和效率,适用于教学、科研和工业设计等领域。 其他说明:文章不仅涵盖了理论知识,还包括大量实战经验和技巧,能够有效指导初学者和有一定基础的研究人员更好地理解和应用COMSOL进行磁场仿真。

Global site tag (gtag.js) - Google Analytics