`
javafan_303
  • 浏览: 963633 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

Base: An Acid Alternative

 
阅读更多

Base: An Acid Alternative

In partitioned databases, trading some consistency for availability can lead to dramatic improvements in scalability.

Dan Pritchett, Ebay

Web applications have grown in popularity over the past decade. Whether you are building an application for end users or application developers (i.e., services), your hope is most likely that your application will find broad adoption—and with broad adoption will come transactional growth. If your application relies upon persistence, then data storage will probably become your bottleneck.

There are two strategies for scaling any application. The first, and by far the easiest, is vertical scaling: moving the application to larger computers. Vertical scaling works reasonably well for data but has several limitations. The most obvious limitation is outgrowing the capacity of the largest system available. Vertical scaling is also expensive, as adding transactional capacity usually requires purchasing the next larger system. Vertical scaling often creates vendor lock, further adding to costs.

Horizontal scaling offers more flexibility but is also considerably more complex. Horizontal data scaling can be performed along two vectors. Functional scaling involves grouping data by function and spreading functional groups across databases. Splitting data within functional areas across multiple databases, or sharding,1 adds the second dimension to horizontal scaling. The diagram in figure 1 illustrates horizontal data-scaling strategies.

As figure 1 illustrates, both approaches to horizontal scaling can be applied at once. Users, products, and transactions can be in separate databases. Additionally, each functional area can be split across multiple databases for transactional capacity. As shown in the diagram, functional areas can be scaled independently of one another.

Functional Partitioning

Functional partitioning is important for achieving high degrees of scalability. Any good database architecture will decompose the schema into tables grouped by functionality. Users, products, transactions, and communication are examples of functional areas. Leveraging database concepts such as foreign keys is a common approach for maintaining consistency across these functional areas.

Relying on database constraints to ensure consistency across functional groups creates a coupling of the schema to a database deployment strategy. For constraints to be applied, the tables must reside on a single database server, precluding horizontal scaling as transaction rates grow. In many cases, the easiest scale-out opportunity is moving functional groups of data onto discrete database servers.

Schemas that can scale to very high transaction volumes will place functionally distinct data on different database servers. This requires moving data constraints out of the database and into the application. This also introduces several challenges that are addressed later in this article.

CAP Theorem

Eric Brewer, a professor at the University of California, Berkeley, and cofounder and chief scientist at Inktomi, made the conjecture that Web services cannot ensure all three of the following properties at once (signified by the acronym CAP):2

Consistency. The client perceives that a set of operations has occurred all at once.

Availability. Every operation must terminate in an intended response.

Partition tolerance. Operations will complete, even if individual components are unavailable.

Specifically, a Web application can support, at most, only two of these properties with any database design. Obviously, any horizontal scaling strategy is based on data partitioning; therefore, designers are forced to decide between consistency and availability.

ACID Solutions

ACID database transactions greatly simplify the job of the application developer. As signified by the acronym, ACID transactions provide the following guarantees:

Atomicity. All of the operations in the transaction will complete, or none will.

Consistency. The database will be in a consistent state when the transaction begins and ends.

Isolation. The transaction will behave as if it is the only operation being performed upon the database.

Durability. Upon completion of the transaction, the operation will not be reversed.

Database vendors long ago recognized the need for partitioning databases and introduced a technique known as 2PC (two-phase commit) for providing ACID guarantees across multiple database instances. The protocol is broken into two phases:

  • First, the transaction coordinator asks each database involved to precommit the operation and indicate whether commit is possible. If all databases agree the commit can proceed, then phase 2 begins.
  • The transaction coordinator asks each database to commit the data.

If any database vetoes the commit, then all databases are asked to roll back their portions of the transaction. What is the shortcoming? We are getting consistency across partitions. If Brewer is correct, then we must be impacting availability, but how can that be?

The availability of any system is the product of the availability of the components required for operation. The last part of that statement is the most important. Components that may be used by the system but are not required do not reduce system availability. A transaction involving two databases in a 2PC commit will have the availability of the product of the availability of each database. For example, if we assume each database has 99.9 percent availability, then the availability of the transaction becomes 99.8 percent, or an additional downtime of 43 minutes per month.

An ACID Alternative

If ACID provides the consistency choice for partitioned databases, then how do you achieve availability instead? One answer is BASE (basically available, soft state, eventually consistent).

BASE is diametrically opposed to ACID. Where ACID is pessimistic and forces consistency at the end of every operation, BASE is optimistic and accepts that the database consistency will be in a state of flux. Although this sounds impossible to cope with, in reality it is quite manageable and leads to levels of scalability that cannot be obtained with ACID.

The availability of BASE is achieved through supporting partial failures without total system failure. Here is a simple example: if users are partitioned across five database servers, BASE design encourages crafting operations in such a way that a user database failure impacts only the 20 percent of the users on that particular host. There is no magic involved, but this does lead to higher perceived availability of the system.

So, now that you have decomposed your data into functional groups and partitioned the busiest groups across multiple databases, how do you incorporate BASE into your application? BASE requires a more in-depth analysis of the operations within a logical transaction than is typically applied to ACID. What should you be looking for? The following sections provide some direction.

Consistency Patterns

Following Brewer's conjecture, if BASE allows for availability in a partitioned database, then opportunities to relax consistency have to be identified. This is often difficult because the tendency of both business stakeholders and developers is to assert that consistency is paramount to the success of the application. Temporal inconsistency cannot be hidden from the end user, so both engineering and product owners must be involved in picking the opportunities for relaxing consistency.

Figure 2 is a simple schema that illustrates consistency considerations for BASE. The user table holds user information including the total amount sold and bought. These are running totals. The transaction table holds each transaction, relating the seller and buyer and the amount of the transaction. These are gross oversimplifications of real tables but contain the necessary elements for illustrating several aspects of consistency.

In general, consistency across functional groups is easier to relax than within functional groups. The example schema has two functional groups: users and transactions. Each time an item is sold, a row is added to the transaction table and the counters for the buyer and seller are updated. Using an ACID-style transaction, the SQL would be as shown in figure 3.

The total bought and sold columns in the user table can be considered a cache of the transaction table. It is present for efficiency of the system. Given this, the constraint on consistency could be relaxed. The buyer and seller expectations can be set so their running balances do not reflect the result of a transaction immediately. This is not uncommon, and in fact people encounter this delay between a transaction and their running balance regularly (e.g., ATM withdrawals and cellphone calls).

How the SQL statements are modified to relax consistency depends upon how the running balances are defined. If they are simply estimates, meaning that some transactions can be missed, the changes are quite simple, as shown in figure 4.

We've now decoupled the updates to the user and transaction tables. Consistency between the tables is not guaranteed. In fact, a failure between the first and second transaction will result in the user table being permanently inconsistent, but if the contract stipulates that the running totals are estimates, this may be adequate.

What if estimates are not acceptable, though? How can you still decouple the user and transaction updates? Introducing a persistent message queue solves the problem. There are several choices for implementing persistent messages. The most critical factor in implementing the queue, however, is ensuring that the backing persistence is on the same resource as the database. This is necessary to allow the queue to be transactionally committed without involving a 2PC. Now the SQL operations look a bit different, as shown in figure 5.

This example takes some liberties with syntax and oversimplifying the logic to illustrate the concept. By queuing a persistent message within the same transaction as the insert, the information needed to update the running balances on the user has been captured. The transaction is contained on a single database instance and therefore will not impact system availability.

A separate message-processing component will dequeue each message and apply the information to the user table. The example appears to solve all of the issues, but there is a problem. The message persistence is on the transaction host to avoid a 2PC during queuing. If the message is dequeued inside a transaction involving the user host, we still have a 2PC situation.

One solution to the 2PC in the message-processing component is to do nothing. By decoupling the update into a separate back-end component, you preserve the availability of your customer-facing component. The lower availability of the message processor may be acceptable for business requirements.

Suppose, however, that 2PC is simply never acceptable in your system. How can this problem be solved? First, you need to understand the concept of idempotence. An operation is considered idempotent if it can be applied one time or multiple times with the same result. Idempotent operations are useful in that they permit partial failures, as applying them repeatedly does not change the final state of the system.

The selected example is problematic when looking for idempotence. Update operations are rarely idempotent. The example increments balance columns in place. Applying this operation more than once obviously will result in an incorrect balance. Even update operations that simply set a value, however, are not idempotent with regard to order of operations. If the system cannot guarantee that updates will be applied in the order they are received, the final state of the system will be incorrect. More on this later.

In the case of balance updates, you need a way to track which updates have been applied successfully and which are still outstanding. One technique is to use a table that records the transaction identifiers that have been applied.

The table shown in figure 6 tracks the transaction ID, which balance has been updated, and the user ID where the balance was applied. Now our sample pseudocode is as shown in figure 7.

This example depends upon being able to peek a message in the queue and remove it once successfully processed. This can be done with two independent transactions if necessary: one on the message queue and one on the user database. Queue operations are not committed unless database operations successfully commit. The algorithm now supports partial failures and still provides transactional guarantees without resorting to 2PC.

There is a simpler technique for assuring idempotent updates if the only concern is ordering. Let's change our sample schema just a bit to illustrate the challenge and the solution (see figure 8). Suppose you also want to track the last date of sale and purchase for the user. You can rely on a similar scheme of updating the date with a message, but there is one problem.

Suppose two purchases occur within a short time window, and our message system doesn't ensure ordered operations. You now have a situation where, depending upon which order the messages are processed in, you will have an incorrect value for last_purchase. Fortunately, this kind of update can be handled with a minor modification to the SQL, as illustrated in figure 9.

By simply not allowing the last_purchase time to go backward in time, you have made the update operations order independent. You can also use this approach to protect any update from out-of-order updates. As an alternative to using time, you can also try a monotonically increasing transaction ID.

Ordering of Message Queues

A short side note on ordered message delivery is relevant. Message systems offer the ability to ensure that messages are delivered in the order they are received. This can be expensive to support and is often unnecessary, and, in fact, at times gives a false sense of security.

The examples provided here illustrate how message ordering can be relaxed and still provide a consistent view of the database, eventually. The overhead required to relax the ordering is nominal and in most cases is significantly less than enforcing ordering in the message system.

Further, a Web application is semantically an event-driven system regardless of the style of interaction. The client requests arrive to the system in arbitrary order. Processing time required per request varies. Request scheduling throughout the components of the systems is nondeterministic, resulting in nondeterministic queuing of messages. Requiring the order to be preserved gives a false sense of security. The simple reality is that nondeterministic inputs will lead to nondeterministic outputs.

Soft State/Eventually Consistent

Up to this point, the focus has been on trading consistency for availability. The other side of the coin is understanding the influence that soft state and eventual consistency has on application design.

As software engineers we tend to look at our systems as closed loops. We think about the predictability of their behavior in terms of predictable inputs producing predictable outputs. This is a necessity for creating correct software systems. The good news in many cases is that using BASE doesn't change the predictability of a system as a closed loop, but it does require looking at the behavior in total.

A simple example can help illustrate the point. Consider a system where users can transfer assets to other users. The type of asset is irrelevant—it could be money or objects in a game. For this example, we will assume that we have decoupled the two operations of taking the asset from one user and giving it to the other with a message queue used to provide the decoupling.

Immediately, this system feels nondeterministic and problematic. There is a period of time where the asset has left one user and has not arrived at the other. The size of this time window can be determined by the messaging system design. Regardless, there is a lag between the begin and end states where neither user appears to have the asset.

If we consider this from the user's perspective, however, this lag may not be relevant or even known. Neither the receiving user nor the sending user may know when the asset arrived. If the lag between sending and receiving is a few seconds, it will be invisible or certainly tolerable to users who are directly communicating about the asset transfer. In this situation the system behavior is considered consistent and acceptable to the users, even though we are relying upon soft state and eventual consistency in the implementation.

Event-Driven Architecture

What if you do need to know when state has become consistent? You may have algorithms that need to be applied to the state but only when it has reached a consistent state relevant to an incoming request. The simple approach is to rely on events that are generated as state becomes consistent.

Continuing with the previous example, what if you need to notify the user that the asset has arrived? Creating an event within the transaction that commits the asset to the receiving user provides a mechanism for performing further processing once a known state has been reached. EDA (event-driven architecture) can provide dramatic improvements in scalability and architectural decoupling. Further discussion about the application of EDA is beyond the scope of this article.

Conclusion

Scaling systems to dramatic transaction rates requires a new way of thinking about managing resources. The traditional transactional models are problematic when loads need to be spread across a large number of components. Decoupling the operations and performing them in turn provides for improved availability and scale at the cost of consistency. BASE provides a model for thinking about this decoupling.
Q

References

  1. http://highscalability.com/unorthodox-approach-database-design-coming-shard.
  2. http://citeseer.ist.psu.edu/544596.html.

DAN PRITCHETT is a Technical Fellow at eBay where he has been a member of the architecture team for the past four years. In this role, he interfaces with the strategy, business, product, and technology teams across eBay marketplaces, PayPal, and Skype. With more than 20 years of experience at technology companies such as Sun Microsystems, Hewlett-Packard, and Silicon Graphics, Pritchett has a depth of technical experience, ranging from network-level protocols and operating systems to systems design and software patterns. He has a B.S. in computer science from the University of Missouri, Rolla.

 

分享到:
评论

相关推荐

    NoSQL 和云计算的关系

    Dan Pritchett在其文章《BASE: An Acid Alternative》中提到,BASE(基本可用、软状态、最终一致性)与ACID(原子性、一致性、隔离性、持久性)原则相对立,它允许数据库在一段时间内处于不一致状态,但最终能够达到...

    【CCF-GESP认证】官方资源与知识点指南:涵盖Python/C++/Scratch编程学习及备考策略

    内容概要:本文详细介绍了CCF-GESP认证的学习资源与知识点指南,分为官方资源与平台、知识点学习与解析、备考策略与工具、实战项目与进阶资源以及学习工具推荐五个部分。官方资源包括CCF数字图书馆提供的免费真题库、一站式学习平台和GESP官网的最新真题下载及考试环境说明。知识点学习部分涵盖Python、C++和图形化编程(Scratch)的核心内容与实战案例。备考策略方面,提出了基础、强化和冲刺三个阶段的分阶段计划,并强调了在线题库模拟测试与社区交流的重要性。实战项目与进阶资源则为不同编程语言提供了具体的应用场景,如Python的智能客服机器人和C++的并行编程与嵌入式开发。最后,推荐了多种学习工具,如代码编辑器VS Code、模拟考试平台和社区支持渠道。 适合人群:准备参加CCF-GESP认证考试的考生,特别是对Python、C++或Scratch编程语言有兴趣的学习者。 使用场景及目标:①帮助考生系统化地学习官方资源,熟悉考试形式和内容;②通过分阶段的备考策略,提高应试能力和编程技能;③利用实战项目和进阶资源,增强实际编程经验和解决复杂问题的能力。 阅读建议:建议考生按照文章中的分阶段备考策略逐步推进学习进度,充分利用官方提供的资源进行练习和模拟测试,并积极参与社区交流以获取更多备考经验和疑难解答。

    natsort-5.0.0.tar.gz

    该资源为natsort-5.0.0.tar.gz,欢迎下载使用哦!

    matlab-交直流变换器供电的直流电机驱动仿真

    这是一个单相/三相交直流变换器的直流电机驱动仿真

    汽车电子领域UDS协议栈源代码解析与应用:V公司的高效实现方案

    内容概要:本文深入探讨了V公司在汽车电子领域的UDS(统一诊断服务)协议栈源代码实现。详细介绍了从诊断会话控制到刷写服务的各种功能模块,重点讲解了关键技术和设计思路,如状态机切换、CRC校验、内存管理和安全访问机制。文中还分享了一些实用技巧,如硬件抽象层设计、动态缓存池、函数指针数组用于服务分发等。此外,文章提到了一些潜在的集成挑战和最佳实践,强调了配置驱动架构的优势以及如何避免常见错误。 适合人群:从事汽车电子开发的技术人员,尤其是对UDS协议栈感兴趣的工程师和技术主管。 使用场景及目标:帮助开发者理解和掌握UDS协议栈的设计与实现,提高车载ECU开发效率,减少量产项目的翻车风险。适用于希望深入了解汽车诊断协议栈内部运作机制的专业人士。 其他说明:文章不仅提供了理论知识,还有大量实际代码片段作为示例,便于读者更好地理解和应用。同时,作者建议读者在实践中结合自身需求进行适当调整,以达到最优效果。

    LabVIEW实现四通道示波器:基于DAQmx驱动的多通道信号采集与显示系统

    内容概要:本文详细介绍了使用LabVIEW开发四通道示波器的方法和技术要点。首先,通过DAQmx驱动配置多通道虚拟通道,确保硬件交互顺畅。接着,利用索引数组将采集到的一维数据拆分为四个通道,并采用内存映射提高处理速度。波形显示部分采用了XY图和动态颜色映射增强视觉效果。为了保证系统的稳定性,引入了生产者-消费者模式进行异步处理,并设置了合理的队列深度。此外,还实现了伪实时频谱分析、自定义触发逻辑以及高效的文件存储功能。最后,对常见的调试问题进行了总结,提供了实用的解决方案。 适合人群:具有一定LabVIEW编程基础的工程师或研究人员。 使用场景及目标:适用于需要开发多通道数据采集与显示系统的实验室环境或工业应用场景。主要目标是帮助开发者快速掌握LabVIEW在多通道示波器开发中的应用,提升工作效率。 其他说明:文中不仅提供了详细的代码片段,还分享了许多实践经验,如硬件配置注意事项、性能优化技巧等。对于初学者来说,这些经验能够有效避免常见错误,加快项目的成功实施。

    PCS储能逆变并网系统:基于三电平拓扑与双闭环控制的高效并网解决方案

    内容概要:本文详细介绍了PCS储能逆变并网系统的实现细节和技术要点。系统采用三电平拓扑结构,通过SVPWM算法优化波形质量,降低谐波含量达40%。双闭环控制确保了系统的稳定性和快速响应能力,特别是在电网电压骤变情况下仍能保持良好的动态特性。PQ控制利用改进的DDSRF算法实现了高效的正负序分离,保障了系统的并网安全性和可靠性。此外,文章还探讨了中点电位平衡、LC滤波参数优化以及孤岛检测等关键技术,并提供了实际调试经验和故障排除方法。 适合人群:从事电力电子、储能系统、逆变器设计的研发工程师和技术人员。 使用场景及目标:适用于需要深入了解储能逆变并网系统的设计原理和实现细节的专业人士,帮助他们掌握三电平拓扑、SVPWM算法、双闭环控制、PQ控制等核心技术,提高系统设计能力和故障排查能力。 其他说明:文中不仅包含了详细的理论分析和算法实现,还有丰富的实践经验分享,如硬件设计中的散热布局优化、软件调试中的参数调整技巧等。

    物联网项目中高效稳定的Socket TCP服务器端通信框架及其应用

    内容概要:本文介绍了一个从商业物联网项目中提炼出的TCP服务器端通信框架。该框架采用双Socket双缓冲队列设计,能够高效处理大量并发连接和数据传输。核心功能包括自动处理连接、数据接收与发送、线程安全的队列管理以及智能重发机制。此外,框架还支持自定义协议解析、心跳检测、流量统计等功能,适用于中小型物联网项目的快速开发。文中提供了详细的代码示例,展示了如何轻松启动服务器、处理数据接收与发送、设置心跳超时等操作。 适合人群:具有一定编程基础的技术人员,尤其是从事物联网、嵌入式系统开发的工程师。 使用场景及目标:① 快速搭建物联网项目的服务器端,如智能电表集抄、停车场车位监测等;② 提升开发效率,减少底层网络编程的工作量;③ 处理高并发连接和大数据量传输,确保系统的稳定性和可靠性。 其他说明:该框架不仅简化了复杂的Socket编程,还提供了丰富的扩展功能,使得开发者可以专注于业务逻辑的实现。

    基于TI芯片的新能源车电机控制器FOC算法及其实现详解

    内容概要:本文详细介绍了基于TI芯片的新能源车电机控制器中FOC(磁场定向控制)算法的具体实现及其相关模块的实际应用。文章首先探讨了电流采样模块中的ADC校正与动态补偿算法,强调了其对控制精度的影响。接着深入剖析了SVPWM生成部分的关键技术和优化方法,如过调制处理和几何法扇区判断。此外,还讲解了CAN通信模块中的重要细节,如发送频率限制、J1939标准帧格式以及校验和计算。文中多次提到工业级代码的特点,即重视异常处理和性能优化,如ADC采样的PWM死区补偿、FOC中的参数自适应、状态机中的故障恢复逻辑等。最后,作者建议新手直接克隆代码并重点研究特定文件,以便更好地理解和掌握这些复杂的实现细节。 适合人群:从事电机控制领域的工程师和技术人员,尤其是对新能源汽车电机控制系统感兴趣的开发者。 使用场景及目标:帮助读者深入了解新能源车电机控制器的实际应用场景和技术难点,掌握FOC算法的具体实现方法,提高实际开发能力。同时,为解决实际工程项目中的问题提供参考。 其他说明:文章提供了多个代码片段作为实例,展示了工业级代码的严谨性和实用性。建议读者结合TI的InstaSPIN库进行对比学习,重点关注量产代码为何做出某些特定的算法结构调整。

    C++与Qt实现串口转网口通信:多路双向传输、UDP/TCP支持及自动化特性

    内容概要:本文详细介绍了一款基于C++和Qt库实现的串口转网口通信工具。该工具能够进行多路双向数据转换,支持UDP和TCP两种连接方式,并提供自动连接、配置文件保存、十六进制数据发送等功能。文中不仅展示了核心代码片段,还分享了一些开发过程中遇到的问题及其解决办法。此外,文章强调了该工具在工业控制领域的广泛应用前景。 适合人群:具有一定C++和Qt编程经验的研发人员,尤其是从事工业控制系统开发的技术人员。 使用场景及目标:适用于需要将串口数据通过网络传输的应用场合,如工业自动化系统集成、远程监控等。主要目的是提高系统的灵活性和扩展性,同时减少硬件成本和技术难度。 其他说明:文中提到的一些关键技术点包括:利用Qt的信号槽机制实现高效的数据交互;通过继承和多态实现不同类型的网络连接;使用QSettings进行配置管理;以及针对可能出现的问题提供了优化建议。

    基于TMS320F28335的光伏并网与离网逆变器设计及其实现

    内容概要:本文详细介绍了基于TMS320F28335 DSP芯片的光伏并网逆变器设计,涵盖硬件和软件两大部分。硬件方面,包括光伏电池板、DC-DC Boost升压电路、全桥逆变电路、并网滤波电路和DSP控制电路的设计要点;软件方面,涉及MPPT算法、并网控制算法、双模式切换机制以及各种保护措施的实现。文中还特别强调了锁相环、SPWM生成、ADC采样等关键技术的具体实现方法及其优化技巧。 适合人群:从事电力电子、新能源技术开发的专业人士,尤其是对光伏逆变器设计感兴趣的工程师和技术爱好者。 使用场景及目标:适用于光伏逆变器的研发过程中,帮助开发者深入了解TMS320F28335的应用,掌握从硬件搭建到软件编程的一系列技能,最终实现高效稳定的光伏并网与离网逆变器。 其他说明:尽管文中提到的内容未通过实物验证,但提供了详尽的设计思路和技术细节,对于理解和实践光伏逆变器设计具有重要参考价值。

    电子元件FCO-3C-UP超低功耗晶体振荡器规格参数及应用:物联网与消费电子产品中的性能优化设计

    内容概要:本文档为FCO-3C-UP超低功耗晶体振荡器的规格说明书,主要介绍了该振荡器的电气参数、物理尺寸、频率稳定性、电流消耗、相位噪声、抖动、老化率等关键性能指标。其工作电压范围为0.9V至1.5V,频率范围涵盖1MHz到50MHz,具备低功耗(最大电流消耗3mA)、低噪声(12kHz至20MHz偏移时相位噪声低至0.3皮秒)、高稳定性的特点。此外,文档还提供了振荡器在不同温度范围内的频率稳定性数据以及启动时间和占空比等重要参数。; 适合人群:电子工程师、硬件设计师以及从事物联网、可穿戴设备、智能手机、游戏主机、数码相机等消费类电子产品开发的技术人员。; 使用场景及目标:①用于需要低功耗高性能时钟源的设计项目;②作为选型参考,帮助工程师根据具体应用场景选择合适的晶体振荡器型号;③为产品开发过程中涉及时钟同步、信号完整性等问题提供解决方案。; 其他说明:为了确保最佳性能,建议在电源引脚与地之间放置一个0.1μF的旁路电容,并尽可能靠近器件安装。同时,该系列产品符合RoHS标准,适用于对环保有要求的应用场合。

    基于TMS320F28335与F28035的20kW三相三电平并网逆变器设计方案及关键技术实现

    内容概要:本文详细介绍了基于TMS320F28335和F28035双DSP架构的20kW三相三电平并网逆变器的设计方案和技术实现。主要内容涵盖双DSP分工协作、双路BOOST升压电路及其MPPT算法、三电平逆变器的PWM生成与中点电位平衡控制、并网同步环节的软件锁相环实现以及PCB布局技巧等方面。文中还分享了许多实际调试经验和常见问题解决方案,如硬件过流保护、EMC干扰处理等。 适合人群:从事光伏并网逆变器设计的研发工程师、电子电力工程师及相关领域的技术人员。 使用场景及目标:适用于需要深入了解并网逆变器核心技术及其实现方法的专业人士,帮助他们掌握高效可靠的逆变器设计思路和技术要点,提高产品性能和稳定性。 其他说明:文中提供了大量源代码片段和具体配置参数,有助于读者更好地理解和应用相关技术。同时,作者也分享了一些宝贵的实践经验,为后续开发提供重要参考。

    优先队列数据结构简易教程

    在计算机科学中,优先队列是一种非常重要的数据结构。它广泛应用于各种领域,如操作系统中的进程调度、网络中的数据包调度、算法设计中的图搜索算法等。优先队列能够根据元素的优先级来组织和管理数据,使得我们可以高效地获取优先级最高的元素。本教程将从优先队列的基本概念、实现方式、应用场景等多个方面进行详细讲解,帮助读者全面理解优先队列。优先队列是一种非常实用的数据结构,掌握它的使用方法和实现原理对于计算机科学的学习和应用具有重要意义。希望本教程能够帮助读者更好地理解和使用优先队列。

    FPGA高速传输中异步LVDS CDR同步器的设计与实现

    内容概要:本文详细介绍了如何在FPGA中实现异步LVDS CDR(时钟数据恢复)同步器,解决跨时钟域的数据传输问题。主要内容包括:1. 使用Verilog代码实现差分信号转换、时钟恢复、同步链处理和数据重组;2. 针对不同FPGA厂商(如Xilinx、Altera、Lattice)的具体实现细节和注意事项;3. 提供了时序约束、调试技巧以及资源占用对比。文中还讨论了如何通过动态相位调整、抗抖动处理和自动阈值调整提高CDR性能。 适合人群:具备FPGA开发经验的硬件工程师和技术爱好者。 使用场景及目标:适用于需要处理高速LVDS数据传输的应用场景,如传感器数据采集、通信设备等。目标是帮助工程师理解和实现高效的跨时钟域数据同步解决方案。 其他说明:文中提供了多个代码片段和调试建议,有助于读者更好地理解和应用所介绍的技术。同时,强调了不同FPGA平台之间的兼容性和性能差异。

    基于MCP协议的大模型交互SDK设计

    本文介绍了Python MCP客户端SDK的实现,这是一个用于与支持MCP协议的大模型服务进行交互的工具。SDK的核心功能包括:创建符合MCP协议的请求、发送请求到模型服务、处理模型响应。它支持多种任务类型如文本生成、内容分析、翻译、摘要、问答及自定义任务,并允许用户指定输出格式(文本、JSON、结构化、Markdown)。SDK还提供了行为约束管理器来创建预定义的行为约束集,适用于不同领域(如教育、医疗、金融)。此外,SDK具有模块化设计、类型安全、灵活配置、会话管理、安全控制、流式支持以及工具类等特性,以满足不同应用场景的需求。;

    信捷PLC与HMI在8轴伺服控制系统中的模块化编程与高效设计

    内容概要:本文详细介绍了基于信捷XDM系列PLC和TG765触摸屏构建的8轴伺服控制系统。该系统采用了模块化的编程方法,将主程序分为多个功能模块(如伺服轴状态处理、IO调度、报警管理等),并通过状态机实现了高效的轴控制。HMI设计方面,利用动态加载技术和统一的控件风格确保了良好的用户体验。此外,文中强调了详细的注释规范和结构化的编程思想,使得复杂的6600步程序易于理解和维护。 适合人群:从事工业自动化领域的工程师和技术人员,特别是那些对PLC编程、HMI设计以及多轴伺服控制系统感兴趣的读者。 使用场景及目标:适用于需要深入了解PLC与HMI协同工作的场合,旨在帮助读者掌握如何通过合理的架构设计来提高系统的稳定性和可维护性,同时降低开发成本和难度。 其他说明:文中不仅提供了具体的编程技巧,还包括了许多实用的经验分享,如注释规范、异常处理框架等,这些都是在实际工程项目中非常有价值的内容。

    Matlab图像拼接GUI:基于Harris角点、SIFT匹配、RANSAC优化的五模块实现

    内容概要:本文详细介绍了基于Matlab的图像拼接GUI系统的实现过程,涵盖了五个主要模块:系统管理、角点提取(Harris角点)、特征匹配(SIFT匹配)、匹配优化(RANSAC)和图像拼接(单映变换)。系统管理模块负责初始化环境和参数设置;角点提取模块使用Harris角点算法识别图像的关键点;特征匹配模块通过SIFT算法寻找匹配点对;匹配优化模块采用RANSAC算法去除误匹配点;最终图像拼接模块利用单映变换完成图像融合。文中还提供了大量代码示例和参数调优技巧,如高斯滤波的sigma值选择、SIFT匹配阈值设定、RANSAC迭代次数和像素容差调整等。 适合人群:对图像处理感兴趣的初学者和有一定编程基础的研究人员。 使用场景及目标:适用于学习和研究图像拼接技术,尤其是希望通过Matlab实现图像处理算法的人群。目标是掌握图像拼接的基本原理和技术实现,能够独立构建类似的图像处理系统。 其他说明:文中提供的代码仅供学习参考,实际应用中建议进一步优化和改进。同时,文中提及了一些实用技巧,如内存管理和性能优化,有助于提高系统的稳定性和效率。

    基于UDS协议的CANoe CAPL脚本实现BootLoader自动化测试

    内容概要:本文详细介绍了如何利用CAPL脚本在CANoe环境中进行基于UDS协议的BootLoader自动化测试。主要内容涵盖刷写流程的触发与控制、安全访问机制、数据传输处理、异常情况应对以及测试报告的生成等方面。文中提供了多个具体的CAPL代码片段,展示了从初始化诊断会话、安全认证、数据下载到最后生成测试报告的完整过程,并强调了在不同阶段需要注意的关键技术和常见陷阱。此外,还讨论了一些优化技巧,如并行测试、电压监测和错误处理机制,以提高测试效率和可靠性。 适合人群:从事汽车电子控制系统开发与测试的技术人员,尤其是对BootLoader刷写测试有需求的研发人员。 使用场景及目标:适用于需要频繁进行ECU刷写的项目,旨在通过自动化手段减少手动操作带来的风险,确保测试的一致性和准确性,同时提高工作效率。具体应用场景包括但不限于新车研发阶段的功能验证、生产线上的质量检验以及售后维修服务中的固件更新。 其他说明:文章不仅提供了详细的代码示例和技术指导,还分享了许多来自实际项目的宝贵经验和最佳实践,对于希望深入了解和掌握这一领域的读者来说非常有价值。

    计算机视觉 :C#+Halcon卡尺找圆

    本资源描述了如何使用C#联合Halcon实现卡尺找圆,主要思路是通过在绘制圆形ROI对象时,给绘制的对象绑定事件:如附加(OnAttach)、拖拽(OnDrag)、调整大小(OnResize),当触发这些操作时,获取计量模型轮廓结果,即可实现圆形卡尺的拖动调整位置、大小。 一、基本步骤: 1、创建计量模型 2、添加计量对象(圆形测量) 3、设置计量模型参数 4、在图像中应用计量模型 5、获取测量结果(圆形卡尺、匹配结果) 二、主要算子: (1)CreateMetrologyModel 用于创建计量模型对象 (2)AddMetrologyObjectCircleMeasure 用于创建一个圆形测量对象,方便进行精确的圆形边缘检测和测量。 (3)SetMetrologyObjectParam 用于设置计量模型对象参数。 (4)ApplyMetrologyModel 用于将计量模型应用到图像。 (5)获取结果算子 GetMetrologyObjectMeasures 用于获取测量轮廓(卡尺)。 GetMetrologyObjectResultContour 用于获取匹配轮廓。 GetMetrologyObjectResult 根据输入获取不同的结果参数。

Global site tag (gtag.js) - Google Analytics