个性化推荐系统简介
个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。购物网站的推荐系统为客户推荐商品, 自动完成个性化选择商品的过程, 满足客户的个性化需求, 推荐基于:
网站最热卖商品
客户所处城市
客户过去的购买行为和购买记录, 推测客户将来可能的购买行为
在电子商务时代, 商家通过购物网站提供了大量的商品, 客户无法一眼通过屏幕就了解所有的商品,也无法直接检查商品的质量. 所以,客户需要一种电子购物助手,能根据客户自己的兴趣爱好推荐客户可能感兴趣或者满意的商品
上面主要说的是电子商务推荐系统,其实其它的推荐系统的描述是差不多的。
推荐系统的主要算法有:
(1) 基于关联规则的推荐算法(Association Rule-based Recommendation)
关于关联规则的推荐算法,可以参考利用orange进行关联规则挖掘 (2) 基于内容的推荐算法 (Content-based Recommendation)
内容过滤主要采用自然语言处理、人工智能、概率统计和机器学习等技术进行过滤。
通过相关特征的属性来定义项目或对象,系统基于用户评价对象的特征学习用户的兴趣,依据用户资料与待预测项目的匹配程度进行推荐,努力向客户推荐与其以前喜欢的产品相似的产品。如新闻组过滤系统News Weeder。
基于内容过滤的系统其优点是简单、有效。其缺点是特征提取的能力有限,过分细化,纯基于内容的推荐系统不能为客户发现新的感兴趣的资源,只能发现和客户已有兴趣相似的资源。这种方法通常被限制在容易分析内容的商品的推荐,而对于一些较难提取出内容的商品,如音乐CD、电影等就不能产生满意的推荐效果。
(3) 协同过滤推荐算法 (Collaborative Filtering Recommendation)
协同过滤是在信息过滤和信息系统中正迅速成为一项很受欢迎的技术。与传统的基于内容过滤直接分析内容进行推荐不同,协同过滤分析用户兴趣,在用户群中找到指定用户的相似(兴趣)用户,综合这些相似用户对某一信息的评价,形成系统对该指定用户对此信息的喜好程度预测。
与传统文本过滤相比,协同过滤有下列优点:
1)能够过滤难以进行机器自动基于内容分析的信息。如艺术品、音乐;
2)能够基于一些复杂的,难以表达的概念(信息质量、品位)进行过滤;
3)推荐的新颖性。 正因为如此,协同过滤在商业应用上也取得了不错的成绩。Amazon,CDNow,MovieFinder,都采用了协同过滤的技术来提高服务质量。
缺点是:
1)用户对商品的评价非常稀疏,这样基于用户的评价所得到的用户间的相似性可能不准确(即稀疏性问题);
2)随着用户和商品的增多,系统的性能会越来越低(即可扩展性问题);
3)如果从来没有用户对某一商品加以评价,则这个商品就不可能被推荐(即最初评价问题)。因此,现在的电子商务推荐系统都采用了几种技术相结合的推荐技术。
比如Slope One就是一种简单高效的协同过滤算法,Slope One 算法是由 Daniel Lemire 教授在 2005 年提出的一个 Item-Based 推荐算法。
还有一种是基于矩阵奇异值分解(SVD)的协同过滤算法,可以看这儿。
ppt链接地址在这儿。
---------------------------------------------------------------------
虾米猜你喜欢的音乐
虾米根据你搜索歌曲的关键字向用户推荐可能感兴趣的小组
Google Reader根据用户的兴趣向用户推荐的相关的RSS
Google Reader左侧的RSS推荐,还算比较准备
在大众点评网搜索“水煮鱼”后向用户推荐的餐馆
豆瓣书籍推荐
新浪音乐歌曲推荐
---------------------------------------------------------------------
收集的几个研究数据挖掘及推荐系统的博客。
http://xlvector.cn/blog/
http://www.cnblogs.com/kuber/
http://blog.csdn.net/zhengyun_ustc/
http://www.fuchaoqun.com/
http://www.guwendong.cn/
http://glinden.blogspot.com/
参考:
http://baike.baidu.com/view/2796958.htm
Slope one:简单高效的推荐算法:http://www.fuchaoqun.com/2008/09/slope_one/
基于Slope One的相关歌曲推荐算法:http://www.fuchaoqun.com/2009/02/slope-one-for-music-recommender-system/
转载自:
http://iamcaihuafeng.blog.sohu.com/141167552.html
分享到:
相关推荐
ChatGPT 在个性化推荐系统中的应用研究 ChatGPT 作为一款基于 Transformer 架构的深度学习模型,它在自然语言处理领域的应用前景非常广阔。近年来,ChatGPT 在个性化推荐系统中的应用研究备受关注,本文将详细探讨 ...
### 非负矩阵分解算法研究及其在个性化推荐系统中的应用 #### 摘要 本文探讨了非负矩阵分解(Non-negative Matrix Factorization, NMF)的基本理论、算法实现及在个性化推荐系统中的具体应用。非负矩阵分解作为一...
推荐系统简介,推荐;排序;召回 ;基于 PAI 10 分钟搭建一个简单推荐系统;~~~~~~~~~~
在现代电商领域,个性化推荐系统已经成为提升用户体验、增加销售额的关键技术。本文将深入探讨如何利用Apache Flink与Alink库构建一个全端智能AI实时推荐系统。Flink是一款流行的开源流处理框架,而Alink是阿里巴巴...
《个性化推荐系统开发指南》是一本深度探讨个性化推荐系统构建的资源,涵盖了从基础理论到实战技巧的全方位知识。在当今大数据和人工智能时代,个性化推荐系统已成为提升用户体验、提高产品黏性和商业价值的重要手段...
《基于Java的个性化推荐系统设计毕业论文》详细探讨了如何运用Java技术和相关算法构建一个能够适应现代教育需求的个性化推荐系统。论文首先介绍了研究的目的及其背景,强调了大数据时代下,教育领域对智能教学系统的...
图书个性化推荐系统的主要使用者分为管理员和学生,实现功能包括管理员:首页、个人中心、学生管理、图书分类管理、图书信息管理、图书预约管理、退换图书管理、管理员管理、留言板管理、系统管理,学生:首页、个人...
SpringBoot项目图书个性化推荐系统是为读者和图书销售平台设计的网络应用程序,旨在提供一个智能化的图书推荐服务。该系统通过集成用户行为分析、内容过滤、协同过滤和混合推荐等算法,实现了对用户阅读偏好的学习和...
个性化推荐系统旨在根据用户的历史行为、偏好和上下文信息,为用户推荐最相关、最有价值的信息或产品。Elasticsearch 可以作为推荐系统的数据存储,存储用户的行为数据、商品信息等。Spark 则可以用来处理和分析这些...
"基于大数据的社团个性化推荐系统" 基于大数据的社团个性化推荐系统是一个基于大数据技术和个性化推荐算法的社团推广系统。该系统旨在解决高校社团推广中的问题,提高学生对校园社团资源的使用效率和效果。 系统...
### 基于大数据的个性化电子商务推荐系统研究 #### 第1章 简介 **研究背景** 随着互联网技术的迅速发展以及用户需求的日益多样化,电子商务已成为人们日常生活中不可或缺的一部分。然而,在海量的商品信息面前,...
### 基于Spring Boot的图书个性化推荐系统关键知识点解析 #### 一、项目背景与目标 本系统旨在解决传统图书管理系统中用户无法快速找到感兴趣书籍的问题,通过引入个性化推荐算法,为用户提供更加精准的图书推荐...
在这个基于个性化推荐的电影资讯系统网站的毕业设计项目中,主要涵盖了多个IT领域的知识点,包括前端开发、后端开发以及推荐算法的应用。以下是对这些关键领域进行详细解释: 1. HTML(超文本标记语言): HTML是...
Python项目之django电影个性化推荐系统(源码 + 说明文档) 第二章 技术介绍 8 2.1 B/S结构 8 2.2MySQL 介绍 8 2.3MySQL环境配置 9 2.4Python语言简介 9 2.5Django框架 9 第三章 系统分析与设计 11 3.1系统说明 11 ...