第4章 类和对象
4.1 类及其实例化
对象就是一类物体的实例,将一组对象的共同特征抽象出来,从而形成“类”的概念。
4.1.1 定义类
像C语言构造结构一样,类也是一种用户自己构造的数据类型并遵循C++的规定。
类要先声明后使用,不管声明内容是否相同,声明同一个名字的两个类是错误的,类是具有惟一标识符的实体;在类中声明的任何成员不能使用extern、auto和register关键字进行修饰;类中声明的变量属于该类,在某些情况下,变量也可以被该类的不同实例所共享。
类和其他数据类型不同的是,组成这种类型的不仅可以有数据,而且可以有对数据进行操作的函数,他们分别叫做类的数据成员和类的成员函数,而且不能在类声明中对数据成员使用表达式进行初始化。
1.类声明
类声明以关键字class开始,其后跟类名。类所声明的内容用花括号括起来,右花括号后的分号作为类关键字声明语句的结束标志。这一对花括号之间的内容称为类体;
访问权限用于控制对象的某个成员在程序中的可访问性,如果没有使用关键字,则所有成员默认声明为private权限。
2.定义成员函数
类中声明的成员函数用来对数据成员进行操作,还必须在程序中实现这些成员函数。
定义成员函数的一般形式如下:
返回类型 类名::成员函数名(参数列表)
{
成员函数的函数体//内部实现
}
其中“::”是作用域运算符,“类名”是成员函数所属类的名字,“::”用于表名其后的成员函数是属于这个特定的类。换言之,“类名::成员函数名”的意思就是对属于“类名”的成员函数进行定义,而“返回类型”则是这个成员函数返回值的类型。
也可以使用关键字inline将成员函数定义为内联函数。
如果在声明类的同时,在类体内给出成员函数的定义,则默认为内联函数。
3.数据成员的赋值
不能在类体内给数据成员赋值。在类体外就更不允许了。
数据成员的具体值是用来描述对象的属性的。只有产生了一个具体的对象,这些数据值才有意义。如果在产生对象时就使对象的数据成员具有指定值,则称为对象的初始化。
4.1.2 使用类的对象
对象和引用都使用运算符“.”访问对象的成员,指针则使用“- >”运算符。
暂不涉及还没有介绍的保护成员,可以归纳出如下规律:
(1)类的成员函数可以直接使用自己类的私有成员(数据成员和成员函数)
(2)类外面的函数不能直接访问类的私有成员(数据成员和成员函数)
(3)类外面的函数只能通过类的对象使用该类的公有成员函数。
在程序运行时,通过为对象分配内存来创建对象。在创建对象时,使用类作为样板,故称对象为类的实例。
定义类对象指针的语法如下:
类名* 对象指针名;
对象指针名=对象的地址;
也可以直接进行初始化。
类名* 对象指针名=对象的地址;
类对象的指针可以通过“->”运算符访问对象的成员,即:
对象指针名->对象成员名
4.1.3 数据封装
面向对象的程序设计是通过为数据和代码建立分块的内存区域,以便提供对程序进行模块化的一种程序设计方法,这些模块可以被用做样板,在需要时在建立其副本。根据这个定义,对象是计算机内存中的一块区域,通过将内存分块,每个模块(即对象)在功能上保持相对独立。
对象被视为能做出动作的实体,对象使用这些动作完成相互之间的作用。换句话说,对象就像在宿主计算机上拥有数据和代码并能相互通信的具有特定功能的一台较小的计算机。
4.2 构造函数
C++有称为构造函数的特殊成员函数,它可自动进行对象的初始化。
初始化和赋值是不同的操作,当C++语言预先定义的初始化和赋值操作不能满足程序的要求时,程序员可以定义自己的初始化和赋值操作。
4.2.1 默认构造函数
当没有为一个类定义任何构造函数的情况下,C++编译器总要自动建立一个不带参数的构造函数。
4.2.2 定义构造函数
1.构造函数的定义和使用方法
构造函数的名字应与类名同名。并在定义构造函数时不能指定返回类型,即使void类型也不可以。
当声明一个外部对象时,外部对象只是引用在其他地方声明的对象,程序并不为外部对象说明调用构造函数。如果是全局对象,在main函数执行之前要调用它们的构造函数。
2.自动调用构造函数
程序员不能在程序中显式地调用构造函数,构造函数是自动调用的。例如构造一个Point类的对象a,不能写成“Point a.Point(x,y) ;”,只能写成“Point a(x,y) ;”。编译系统会自动调用Point(x,y)产生对象a并使用x和y将其正确地初始化。
可以设计多个构造函数,编译系统根据对象产生的方法调用相应的构造函数,构造函数是在产生对象的同时初始化对象的。
4.2.3 构造函数和预算符new
运算符new用于建立生存期可控的对象,new返回这个对象的指针。由于类名被视为一个类型名,因此,使用new建立动态对象的语法和建立动态变量的语法类似,其不同点是new和构造函数一起使用。
使用new建立的动态对象只能用delete删除,以便释放所占空间。应养成及时释放不再使用的内存空间的习惯。
4.2.4 构造函数的默认参数
如果程序定义自己的有参数构造函数,又想使用无参数形式的构造函数,解决的方法时间相应的构造函数全部使用默认的参数设计。
4.2.5 复制构造函数
引用在类中一个很重要的用途是用在复制构造函数中。一是一类特殊而且重要的函数,通常用于使用已有的对象来建立一个新对象。
在通常情况下,编译器建立一个默认复制构造函数,默认复制构造函数采用拷贝方式使用已有的对象来建立新对象,所以又直译为拷贝构造函数。程序员可以自己定义复制构造函数,对类A而言,复制构造函数的原型如下:
A::A(A&)
从这个函数原型来看,首先它是一个构造函数,因为这毕竟是在创造一个新对象。其次,他的参数有些特别,是引用类自己的对象,即用一个已有的对象来建立新对象。使用引用是从程序的执行效率角度考虑的。为了不改变原有对象,更普通的形式是像下面这样使用const限定:
A::A(const A &)
像调用构造函数一样,如果自定义了复制构造函数,编译器只调用程序员为它设计的赋值构造函数。
在C++中,在一个类中定义的成员函数可以访问该类任何对象的私有成员。
4.3 析构函数
在对象消失时,应使用析构函数释放由构造函数分配的内存。构造函数、赋值构造函数和析构函数是构造型成员函数的基本成员,应深刻理解他们的作用并熟练掌握其设计方法。
4.3.1 定义析构函数
因为调用析构函数也是由编译器来完成的,所以编译器必须总能知道应调用哪个函数。最容易、也最符合逻辑的方法是指定这个函数的名称与类名一样。为了与析构函数区分,在析构函数的前面加上一个“~”号(仍然称析构函数与类同名)。在定义析构函数时,不能指定任何返回类型,即使指定void类型返回类型也不行。析构函数也不能指定参数,但是可以显示地说明参数为void,即形如A::~A(void)。从函数重载的角度分析,一个类也只能定义一个析构函数且不能指明参数,以便编译系统自动调用。
析构函数在对象的生存期结束时被自动调用。当对象的生存期结束时,程序为这个对象调用析构函数,然后回收这个对象占用的内存。全局对象和静态对象的析构函数在程序运行结束之前调用。
类的对象数组的每个元素调用一次析构函数。全局对象数组的析构函数在程序结束之前被调用。
4.3.2 析构函数与运算符delete
运算符delete与析构函数一起工作。当使用运算符delete删除一个动态对象时,他首先为这个动态对象调用析构函数,然后再释放这个动态对象占用的内存,这和使用new建立动态对象的过程正好相反。
当使用delete释放动态对象数组时,必须告诉这个动态对象数组有几个元素对象,C++使用“[ ]”来实现。即语句
delete[ ] ptr ; //注意不要写错为delete ptr[]
当程序先后创建几个对象时,系统按后建先析构的原则析构对象。当使用delete调用析构函数时,则按delete的顺序析构。
4.3.3 默认析构函数
如果在定义类时没有定义析构函数,C++编译器也为它产生一个函数体为空的默认析构函数。
4.4 调用复制构造函数的综合实例
4.5 成员函数重载及默认参数
4.6 this指针
使用this指针,保证了每个对象可以拥有自己的数据成员,但处理这些数据成员的代码可以被所有的对象共享。
C++规定,当一个成员函数被调用是,系统自动向它传递一个隐含的参数,该参数是一个指向调用该函数的对象的指针,从而使成员函数知道该对哪个对象进行操作。在程序中,可以使用关键字this来引用该指针。this指针是C++实现封装的一种机制,它将对象和该对象调用的成员函数连接在一起,在外部看来,每一个对象都拥有自己的成员函数。
除非有特殊需要,一般情况下都省略符号“this ->”,而让系统进行默认设置。
4.7 一个类的对象作为另一个类的成员
4.8 类和对象的性质
4.8.1 对象的性质
(1)同一个类的对象之间可以相互赋值。
(2)可使用对象数组。
(3)可使用指向对象的指针,使用取地址运算符&将一个对象的地址置于该指针中。
注意,指向对象的指针的算术运算规则与C语言的一样,但指向对象的指针不能取数据成员的地址,也不能去成员函数的地址。
(4)对象可以用作函数参数。
(5)对象作为函数参数时,可以使用对象、对象引用和对象指针。
(6)一个对象可以做为另一个类的成员。
4.8.2 类的性质
1.使用类的权限
为了简单具体,讨论数据成员为私有,成员函数为公有的情况。
(1)类本身的成员函数可以使用类的所有成员(私有和公有成员)。
(2)类的对象只能访问公有成员函数。
(3)其他函数不能使用类的私有成员,也不能使用公有成员函数,它们只能通过类的对象使用类的公有成员函数。
(4)虽然一个可以包含另外一个类的对象,但这个类也只能通过被包含类的对象使用那个类的成员函数,通过成员函数使用数据成员。
2.不完全的类声明
类不是内存中的物理实体,只有当使用类产生对象时,才进行内存分配,这种对象建立的过程称为实例化。
应当注意的是:类必须在其成员使用之前先进行声明。
class MembersOnly; //不完全的类声明
MenbersOnly *club; //定义一个全局变量类指针
第一条语句称为不完全类声明,它用于在类没有完全定义之前就引用该类的情况。
不完全声明的类不能实例化,否则会出现编译错误;不完全声明仅用于类和结构,企图存取没有完全声明的类成员,也会引起编译错误。
3.空类
尽管类的目的是封装代码和数据,它也可以不包括任何声明。
class Empty{};
4.类作用域
声明类时所使用的一对花括号形成所谓的类的作用域。在类作用域中声明的标识符只在类中可见。
如果该成员函数的实现是在类定义之外给出的,则类作用域也包含类中成员函数的作用域。
类中的一个成员名可以使用类名和作用域运算符来显式地指定,这称为成员名限定。
4.9 面向对象的标记图
4.9.1 类和对象的UML标记图
4.9.2 对象的结构与连接
只有定义和描述了对象之间的关系,各个对象才能构成一个整体的、有机的系统模型,这就是对象的结构和连结关系。对象结构是指对象之间的分类(继承)关系和组成(聚合)关系,统称为关联关系。对象之间的静态关系是通过对象属性之间的连接反映的,称为实例连接。对象行为之间的动态关系是通过对象行为(信息)之间的依赖关系表现的,称之为消息连接,实例连接和消息连接统称为连接。
1.分类关系及其表示
C++中的分类结构是继承(基类/派生类)结构,UML使用一个空三角形表示继承关系,三角形指向基类。
2.对象组成关系及其表示
组成关系说明的结构是整体与部分关系。C++中最简单的是包含关系。C++语言中的“聚合”隐含了两种实现方式,第一种方式是独立地定义,可以属于多个整体对象,并具有不同生存期。这种所属关系是可以动态变化的,称之为聚集。使用空心菱形表示它们之间的关系。第二种方式是用一个类的对象作为一种广义的数据类型来定义整体对象的一个属性,构成一个嵌套对象。在这种情况下,这个类的对象只能隶属于惟一的整体对象并与它同生同灭,称这种情况为“组合”,它们之间的关联关系比第一种强,具有管理组成部分的责任,使用实心菱形表示。
3.实例连接及其表示
实例连接反映对象之间的静态关系,例如车和驾驶员的关系,这种双边关系在实现中可以通过对象(实例)的属性表达出来。实例连接有一对一、一对多、多对多3种连接方式。
4.消息连接及其表示
消息连接描述对象之间的动态关系。即若一个对象在执行自己的操作时,需要通过消息请求另一个对象为它完成某种服务,则说第一个对象与第二个对象之间存在着消息连接。消息连接是有方向的,使用一条带箭头的实线表示,从消息的发送者指向消息的接收者。
4.9.3 使用实例
4.9.4 对象、类和消息
对象的属性是指描述对象的数据成员。数据成员可以是系统或程序员定义的数据类型。对象属性的集合称为对象的状态。
对象的行为是定义在对象属性上的一组操作的集合。操作(函数成员)是响应消息而完成的算法,表示对象内部实现的细节。对象的操作集合体现了对象的行为能力。
对象的属性和行为是对象定义的组成要素,分别代表了对象的静态和动态特征。由以上分析的例子可见,无论对象是简单的或是负责的,一般具有以下特征:
(1)有一个状态,由与其相关的属性集合所表征。
(2)有惟一标识名,可以区别于其他对象。
(3)有一组操作方法,每个操作决定对象的一种行为。
(4)对象的状态只能被自己的行为所改变。
(5)对象的操作包括自身操作(施加于自身)和施加于其他对象的操作。
(6)对象之间以消息传递的方式进行通信。
(7)一个对象的成员仍可以是一个对象。
4.10 面向对象编程的文件规范
一般要求将类的声明放在头文件中,非常简单的成员函数可以在声明中定义(默认内联函数形式),实现放在.cpp文件中。在.cpp文件中,将头文件包含进去。主程序单独使用一个文件,这就是多文件编程规范。
4.10.1 编译指令
C++的源程序可包含各种编译指令,以指示编译器对源代码进行编译之前先对其进行预处理。所有的编译指令都以#开始,每条编译指令单独占用一行,同一行不能有其他编译指令和C++语句(注释例外)。编译指令不是C++的一部分,但扩展了C++编程环境的使用范围,从而改善程序的组织和管理。
1.嵌入指令
嵌入指令#include指示编译器将一个源文件嵌入到带有#include指令的源文件中该指令所在的位置处。尖括号或双引号中的文件名可包含路径信息。例如:
#include<\user\prog.h>
注意:由于编译指令不是C++的一部分,因此,在这里表示反斜杠时只使用一个反斜杠。
2.宏定义
#define指令定义一个标识符及串,在源程序中每次遇到该标识符时,编译器均用定义的串代替之。该标识符称为宏名,而将替换过程称之为宏替换。#define指令用以进行宏定义,其一般形式如下:
#define 宏名 替换正文
“宏名”必须是一个有效的C++标识符,“替换正文”可为任意字符组成的字符序列。“宏名”和“替换正文”之间至少有一个空格。注意,宏定义由新行结束,而不以分号结束。如果给出了分号,则它也被视作为替换正文的一部分。当替换正文要书写在多行上时,除最后一行外,每行的行尾要加上一个反斜线,表示宏定义继续到下一行。
因宏定义有许多不安全因素,对需要使用无参数宏的场合,应该尽量使用const代替宏定义。
在程序的一个地方定义的宏名,如果不想使其影响到程序的其他地方,可以在不再使用时用#undef删除。
3.条件编译指令
条件编译指令是#if、#else、#elif和#endif,它们构成类似于C++的if选择结构,其中#endif表示一条指令结束。
编译指令#if用于控制编译器对源程序的某部分有选择地进行编译。该部分从#if开始,到#endif结束。如果#if后的常量表达式为真,则编译这部分,否则就不编译该部分,这时,这部分代码相当于被从源文件中删除。
编译指令#else在#if测试失效的情况下建立另外一种选择。可以在#else分支中使用编译指令#error输出出错信息。#error使用的形式如下:
#error 出错信息
“出错信息”是一个字符序列。当遇到#error指令时,编译器显示其后面的“出错信息”,并中止对程序的编译。
编译指令可嵌套,嵌套规则和编译器对其的处理方式与C++的if预计嵌套情况类似。
4.define操作符
关键字defined不是指令,而是一个预处理操作符,用于判断一个标识符是否已经被#define定义。如果标识符identifier已被#define定义,则defined(identifier)为真,否则为假。
条件编译指令#ifdef和#ifndef用于测试其后的标识符是否被#define定义,如果已经被定义,则#ifdef测试为真,#ifndef测试为假;如果没有被定义,则#ifdef测试为假,#ifndef测试为真。
4.10.2 在头文件中使用条件编译
分享到:
相关推荐
拟阵约束下最大化子模函数的模型及其算法的一种熵聚类方法.pdf
内容概要:本文探讨了在两级电力市场环境中,针对省间交易商的最优购电模型的研究。文中提出了一个双层非线性优化模型,用于处理省内电力市场和省间电力交易的出清问题。该模型采用CVaR(条件风险价值)方法来评估和管理由新能源和负荷不确定性带来的风险。通过KKT条件和对偶理论,将复杂的双层非线性问题转化为更易求解的线性单层问题。此外,还通过实际案例验证了模型的有效性,展示了不同风险偏好设置对购电策略的影响。 适合人群:从事电力系统规划、运营以及风险管理的专业人士,尤其是对电力市场机制感兴趣的学者和技术专家。 使用场景及目标:适用于希望深入了解电力市场运作机制及其风险控制手段的研究人员和技术开发者。主要目标是为省间交易商提供一种科学有效的购电策略,以降低风险并提高经济效益。 其他说明:文章不仅介绍了理论模型的构建过程,还包括具体的数学公式推导和Python代码示例,便于读者理解和实践。同时强调了模型在实际应用中存在的挑战,如数据精度等问题,并指出了未来改进的方向。
内容概要:本文探讨了在MATLAB/Simulink平台上针对四机两区系统的风储联合调频技术。首先介绍了四机两区系统作为经典的电力系统模型,在风电渗透率增加的情况下,传统一次调频方式面临挑战。接着阐述了风储联合调频技术的应用,通过引入虚拟惯性控制和下垂控制策略,提高了系统的频率稳定性。文章展示了具体的MATLAB/Simulink仿真模型,包括系统参数设置、控制算法实现以及仿真加速方法。最终结果显示,在风电渗透率为25%的情况下,通过风储联合调频,系统频率特性得到显著提升,仿真时间缩短至5秒以内。 适合人群:从事电力系统研究、仿真建模的技术人员,特别是关注风电接入电网稳定性的研究人员。 使用场景及目标:适用于希望深入了解风储联合调频机制及其仿真实现的研究人员和技术开发者。目标是掌握如何利用MATLAB/Simulink进行高效的电力系统仿真,尤其是针对含有高比例风电接入的复杂场景。 其他说明:文中提供的具体参数配置和控制算法有助于读者快速搭建类似的仿真环境,并进行相关研究。同时强调了参考文献对于理论基础建立的重要性。
内容概要:本文介绍了永磁同步电机(PMSM)无感控制技术,特别是高频方波注入与滑膜观测器相结合的方法。首先解释了高频方波注入法的工作原理,即通过向电机注入高频方波电压信号,利用电机的凸极效应获取转子位置信息。接着讨论了滑膜观测器的作用,它能够根据电机的电压和电流估计转速和位置,具有较强的鲁棒性。两者结合可以提高无传感器控制系统的稳定性和精度。文中还提供了具体的Python、C语言和Matlab代码示例,展示了如何实现这两种技术。此外,简要提及了正弦波注入的相关论文资料,强调了其在不同工况下的优势。 适合人群:从事电机控制系统设计的研发工程师和技术爱好者,尤其是对永磁同步电机无感控制感兴趣的读者。 使用场景及目标:适用于需要减少传感器依赖、降低成本并提高系统可靠性的情况,如工业自动化设备、电动汽车等领域的电机控制。目标是掌握高频方波注入与滑膜观测器结合的具体实现方法,应用于实际工程项目中。 其他说明:文中提到的高频方波注入和滑膜观测器的结合方式,不仅提高了系统的性能,还在某些特殊情况下表现出更好的适应性。同时,附带提供的代码片段有助于读者更好地理解和实践这一技术。
内容概要:本文深入探讨了MATLAB中扩展卡尔曼滤波(EKF)和双扩展卡尔曼滤波(DEKF)在电池参数辨识中的应用。首先介绍了EKF的基本原理和代码实现,包括状态预测和更新步骤。接着讨论了DEKF的工作机制,即同时估计系统状态和参数,解决了参数和状态耦合估计的问题。文章还详细描述了电池参数辨识的具体应用场景,特别是针对电池管理系统中的荷电状态(SOC)估计。此外,提到了一些实用技巧,如雅可比矩阵的计算、参数初始值的选择、数据预处理方法等,并引用了几篇重要文献作为参考。 适合人群:从事电池管理系统开发的研究人员和技术人员,尤其是对状态估计和参数辨识感兴趣的读者。 使用场景及目标:适用于需要精确估计电池参数的实际项目,如电动汽车、储能系统等领域。目标是提高电池管理系统的性能,确保电池的安全性和可靠性。 其他说明:文章强调了实际应用中的注意事项,如数据处理、参数选择和模型优化等方面的经验分享。同时提醒读者关注最新的研究成果和技术进展,以便更好地应用于实际工作中。
内容概要:本文详细介绍了在无电子凸轮功能情况下,利用三菱FX3U系列PLC和威纶通触摸屏实现分切机上下收放卷张力控制的方法。主要内容涵盖硬件连接、程序框架设计、张力检测与读取、PID控制逻辑以及触摸屏交互界面的设计。文中通过具体代码示例展示了如何初始化寄存器、读取张力传感器数据、计算张力偏差并实施PID控制,最终实现稳定的张力控制。此外,还讨论了卷径计算、速度同步控制等关键技术点,并提供了现场调试经验和优化建议。 适合人群:从事自动化生产设备维护和技术支持的专业人士,尤其是熟悉PLC编程和触摸屏应用的技术人员。 使用场景及目标:适用于需要对分切机进行升级改造的企业,旨在提高分切机的张力控制精度,确保材料切割质量,降低生产成本。通过本方案可以实现±3%的张力控制精度,满足基本生产需求。 其他说明:本文不仅提供详细的程序代码和硬件配置指南,还分享了许多实用的调试技巧和经验,帮助技术人员更好地理解和应用相关技术。
内容概要:本文详细介绍了一种基于西门子S7-200和S7-300 PLC以及组态王软件的三泵变频恒压供水系统。主要内容涵盖IO分配、接线图原理图、梯形图程序编写和组态画面设计四个方面。通过合理的硬件配置和精确的编程逻辑,确保系统能够在不同负载情况下保持稳定的供水压力,同时实现节能和延长设备使用寿命的目标。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是熟悉PLC编程和组态软件使用的专业人士。 使用场景及目标:适用于需要稳定供水的各种场合,如住宅小区、工厂等。目标是通过优化控制系统,提升供水效率,减少能源消耗,并确保系统的可靠性和安全性。 其他说明:文中提供了详细的实例代码和调试技巧,帮助读者更好地理解和实施该项目。此外,还分享了一些实用的经验教训,有助于避免常见的错误和陷阱。
内容概要:本文详细介绍了三相三线制静止无功发生器(SVG/STATCOM)在Simulink中的仿真模型设计与实现。主要内容涵盖ip-iq检测法用于无功功率检测、dq坐标系下的电流解耦控制、电压电流双闭环控制系统的设计、SVPWM调制技术的应用以及具体的仿真参数设置。文中不仅提供了理论背景,还展示了具体的Matlab代码片段,帮助读者理解各个控制环节的工作原理和技术细节。此外,文章还讨论了实际调试中遇到的问题及解决方案,强调了参数调整的重要性。 适合人群:从事电力系统自动化、电力电子技术研究的专业人士,特别是对SVG/STATCOM仿真感兴趣的工程师和研究人员。 使用场景及目标:适用于希望深入了解SVG/STATCOM工作原理并掌握其仿真方法的研究人员和工程师。目标是在实践中能够正确搭建和优化SVG/STATCOM的仿真模型,提高无功补偿的效果。 其他说明:文章提供了丰富的实例代码和调试技巧,有助于读者更好地理解和应用所学知识。同时,文中提及的一些经验和注意事项来源于实际项目,具有较高的参考价值。
基于SIMULINK的风力机发电效率建模探究.pdf
内容概要:本文介绍了如何将CarSim的动力学模型与Simulink的智能算法相结合,利用模型预测控制(MPC)实现车辆的智能超车换道。主要内容包括MPC控制器的设计、路径规划算法、联合仿真的配置要点以及实际应用效果。文中提供了详细的代码片段和技术细节,如权重矩阵设置、路径跟踪目标函数、安全超车条件判断等。此外,还强调了仿真过程中需要注意的关键参数配置,如仿真步长、插值设置等,以确保系统的稳定性和准确性。 适合人群:从事自动驾驶研究的技术人员、汽车工程领域的研究人员、对联合仿真感兴趣的开发者。 使用场景及目标:适用于需要进行自动驾驶车辆行为模拟的研究机构和企业,旨在提高超车换道的安全性和效率,为自动驾驶技术研发提供理论支持和技术验证。 其他说明:随包提供的案例文件已调好所有参数,可以直接导入并运行,帮助用户快速上手。文中提到的具体参数和配置方法对于初学者非常友好,能够显著降低入门门槛。
内容概要:本文详细介绍了利用MATLAB进行信号与系统实验的具体步骤和技术要点。首先讲解了常见信号(如方波、sinc函数、正弦波等)的生成方法及其注意事项,强调了时间轴设置和参数调整的重要性。接着探讨了卷积积分的两种实现方式——符号运算和数值积分,指出了各自的特点和应用场景,并特别提醒了数值卷积时的时间轴重构和步长修正问题。随后深入浅出地解释了频域分析的方法,包括傅里叶变换的符号计算和快速傅里叶变换(FFT),并给出了具体的代码实例和常见错误提示。最后阐述了离散时间信号与系统的Z变换分析,展示了如何通过Z变换将差分方程转化为传递函数以及如何绘制零极点图来评估系统的稳定性。 适合人群:正在学习信号与系统课程的学生,尤其是需要完成相关实验任务的人群;对MATLAB有一定基础,希望通过实践加深对该领域理解的学习者。 使用场景及目标:帮助学生掌握MATLAB环境下信号生成、卷积积分、频域分析和Z变换的基本技能;提高学生解决实际问题的能力,避免常见的编程陷阱;培养学生的动手能力和科学思维习惯。 其他说明:文中不仅提供了详细的代码示例,还分享了许多实用的小技巧,如如何正确保存实验结果图、如何撰写高质量的实验报告等。同时,作者以幽默风趣的语言风格贯穿全文,使得原本枯燥的技术内容变得生动有趣。
KUKA机器人相关文档
内容概要:本文详细介绍了无传感器永磁同步电机(PMSM)控制技术,特别是针对低速和中高速的不同控制策略。低速阶段采用I/F控制,通过固定电流幅值和斜坡加速的方式启动电机,确保平稳启动。中高速阶段则引入滑模观测器进行反电动势估算,从而精确控制电机转速。文中还讨论了两者之间的平滑切换逻辑,强调了参数选择和调试技巧的重要性。此外,提供了具体的伪代码示例,帮助读者更好地理解和实现这一控制方案。 适合人群:从事电机控制系统设计的研发工程师和技术爱好者。 使用场景及目标:适用于需要降低成本并提高可靠性的应用场景,如家用电器、工业自动化设备等。主要目标是掌握无传感器PMSM控制的基本原理及其优化方法。 其他说明:文中提到的实际案例和测试数据有助于加深理解,同时提醒开发者注意硬件参数准确性以及调试过程中可能出现的问题。
智能家居与物联网培训材料.ppt
内容概要:本文详细介绍了使用Matlab解决车辆路径规划问题的四种经典算法:TSP(旅行商问题)、CVRP(带容量约束的车辆路径问题)、CDVRP(带容量和距离双重约束的车辆路径问题)和VRPTW(带时间窗约束的车辆路径问题)。针对每个问题,文中提供了具体的算法实现思路和关键代码片段,如遗传算法用于TSP的基础求解,贪心算法和遗传算法结合用于CVRP的路径分割,以及带有惩罚函数的时间窗约束处理方法。此外,还讨论了性能优化技巧,如矩阵运算替代循环、锦标赛选择、2-opt局部优化等。 适合人群:具有一定编程基础,尤其是对物流调度、路径规划感兴趣的开发者和技术爱好者。 使用场景及目标:适用于物流配送系统的路径优化,旨在提高配送效率,降低成本。具体应用场景包括但不限于外卖配送、快递运输等。目标是帮助读者掌握如何利用Matlab实现高效的路径规划算法,解决实际业务中的复杂约束条件。 其他说明:文中不仅提供了详细的代码实现,还分享了许多实践经验,如参数设置、数据预处理、异常检测等。建议读者在实践中不断尝试不同的算法组合和优化策略,以应对更加复杂的实际问题。
软考网络工程师2010-2014真题及答案完整版 全国计算机软考 适合软考中级人群
包括:源程序工程文件、Proteus仿真工程文件、论文材料、配套技术手册等 1、采用51/52单片机作为主控芯片; 2、采用1602液晶显示:测量酒精值、酒驾阈值、醉驾阈值; 3、采用PCF8591进行AD模数转换; 4、LED指示:正常绿灯、酒驾黄灯、醉驾红灯; 5、可通过按键修改酒驾醉驾阈值;
内容概要:本文详细介绍了利用MATLAB实现约束最优化求解的方法,主要分为两大部分:无约束优化和带约束优化。对于无约束优化,作者首先讲解了梯度下降法的基本原理和实现技巧,如步长搜索和Armijo条件的应用。接着深入探讨了带约束优化问题,特别是序列二次规划(SQP)方法的具体实现,包括拉格朗日函数的Hesse矩阵计算、QP子问题的构建以及拉格朗日乘子的更新策略。文中不仅提供了详细的MATLAB代码示例,还分享了许多调参经验和常见错误的解决办法。 适合人群:具备一定数学基础和编程经验的研究人员、工程师或学生,尤其是对最优化理论和应用感兴趣的读者。 使用场景及目标:适用于需要解决各类优化问题的实际工程项目,如机械臂能耗最小化、化工过程优化等。通过学习本文,读者能够掌握如何将复杂的约束优化问题分解为更易处理的二次规划子问题,从而提高求解效率和准确性。 其他说明:文章强调了优化算法选择的重要性,指出不同的问题结构决定了最适合的算法。此外,作者还分享了一些实用的经验教训,如Hesse矩阵的正定性处理和惩罚因子的动态调整,帮助读者少走弯路。
KUKA机器人相关资料
内容概要:本文详细介绍了某制造企业在疫苗车间控制系统中使用西门子200Smart PLC和维纶触摸屏的具体实现方法和技术要点。主要内容涵盖配液罐的模拟量处理、发酵罐的PID控制、USS通讯控制变频器、CIP清洗程序以及触摸屏权限管理等方面。文中不仅展示了具体的代码片段,还分享了许多调试经验和优化技巧,如模拟量处理中避免库指令占用额外存储空间、PID控制中的参数整定、USS通讯中的控制字配置等。 适用人群:从事工业自动化控制领域的工程师和技术人员,尤其是对中小型PLC和触摸屏编程感兴趣的从业者。 使用场景及目标:适用于疫苗车间及其他类似生物制药生产线的自动化控制系统设计和实施。目标是帮助读者掌握中小型PLC在复杂生产工艺中的应用技巧,提高系统的可靠性和效率。 其他说明:文章强调了模块化设计的重要性,提供了许多实用的操作建议和调试经验,有助于读者更好地理解和应用相关技术。此外,还提到了一些常见的错误及其解决方案,使读者能够避免类似的陷阱。