- 浏览: 19566 次
- 性别:
- 来自: 大连
最近访客 更多访客>>
最新评论
-
疯狂的草儿:
谢谢 一个小的知识点
HTML中LABEL标签的用途[转] -
beyondsanli:
ClassA test1= new ClassA(12); ...
我的理解 instanceof 用法 -
kenlistian:
哈,我安装dbi很顺利,参考我的帖子。http://www.i ...
Ruby连接Mysql数据库 -
yelaiwei:
用instanceof来判断类的类型是发生在编译期而不是在运行 ...
我的理解 instanceof 用法 -
dds543:
你那个instanceof int[]对吗?我觉得不对阿
因为 ...
我的理解 instanceof 用法
在软计算课程上,老师让我们编程实现Hopfield网、联想记忆、BM、BP、SOFM、遗传算法。正在学习Ruby,就用ruby实现了上述内容。上述实现的内容比较简单,但没有对每个程序的输入和输出做说明。如果有任何疑问可以留言。希望和大家交流!
Hopfield
BM算法
BP算法
联想记忆(Hopfield)
SOFM网(输入为sin曲线。实现了点的文件生成,再用C语言画图,ruby是在不容易实现画图,除非在Mac系统里)
SOFM网C语言画图实现
GA-遗传算法
Hopfield
w = Array.new(4) 4.times do |i| w[i] = Array.new(4,0) 4.times do |j| if j > i w[i][j] = (rand 101) / 100.0 * (-1) ** (rand 2) else w[i][j]=w[j][i] end end end u=Array.new(4) 4.times do |i| u[i] = (rand 101) / 100.0 * (-1) ** (rand 2) end target = Array.new(16) 16.times do |i| target[i] = Array.new(4) if i == 0 target[0] = [-1,-1,-1,-1] next end if i > 0 4.times do |k| t = target[i-1][k] target[i][k] = t end 4.times do |j| ttt = target[i-1][3-j] if ttt == -1 target[i][3-j] = 1 break else target[i][3-j] = -1 end end end end 16.times do |k| energy = 0 4.times do |i| 4.times do |j| energy += -0.5*w[i][j]*target[k][i]*target[k][j] end energy+=u[i]*target[k][i] end puts target[k].join(" ") +"\t\t"+ energy.to_s end 16.times do |i| tem = "" puts "\n" 4.times do |k| tem += target[i][k].to_s + " " end puts tem tem = "" total = 0 30.times do |j| total = 0 4.times do |k| kk = target[i][k] if kk == 1 total += 2 ** (3-k) end end if total/10 == 1 tem += total.to_s + " " else tem += " " + total.to_s + " " end total=0 rRound = rand 4 4.times do |k| total += w[rRound][k] * target[i][k] end if total-u[rRound] >= 0 target[i][rRound] = 1 else target[i][rRound] = -1 end end total = 0 4.times do |j| 4.times do |k| total += -0.5 * w[j][k] * target[i][j] * target[i][k] end total += u[j] * target[i][j] end tem += " " + total.to_s puts tem end
BM算法
initial=[1,-1,1,-1] t,n=1,1000 w = Array.new(4) 4.times do |i| w[i] = Array.new(4,0) 4.times do |j| if j > i w[i][j] = (rand 101) / 100.0 * (-1) ** (rand 2) else w[i][j]=w[j][i] end end end u=Array.new(4) 4.times do |i| u[i] = (rand 101) / 100.0 * (-1) ** (rand 2) end def p(tt,mm) 1.0/(1+Math.exp( -tt/mm )) end while n>0.01 select=rand 4 hi=0 4.times do |j| hi+=w[select][j]*initial[j] end hi-=u[select] if hi>0 initial[select]=1 else a=p(hi,n) if n>10 b=(rand 700)/1000.0 else b=0.5+(rand 200)/1000.0 end if a > b initial[select]=1 else initial[select]=-1 end end n=1000/(1+t) t+=1 end total=0 4.times do |i| 4.times do |j| total+=-0.5*w[i][j]*initial[i]*initial[j] end total+=u[i]*initial[i] end puts initial.join("\t")+"\t\t"+total.to_s puts "\n" target = Array.new(16) 16.times do |i| target[i] = Array.new(4) if i == 0 target[0] = [-1,-1,-1,-1] next end if i > 0 4.times do |k| t = target[i-1][k] target[i][k] = t end 4.times do |j| ttt = target[i-1][3-j] if ttt == -1 target[i][3-j] = 1 break else target[i][3-j] = -1 end end end end 16.times do |k| energy = 0 4.times do |i| 4.times do |j| energy += -0.5*w[i][j]*target[k][i]*target[k][j] end energy+=u[i]*target[k][i] end puts target[k].join(" ") +"\t\t"+ energy.to_s end 16.times do |i| tem = "" puts "\n" 4.times do |k| tem += target[i][k].to_s + " " end puts tem tem = "" total = 0 30.times do |j| total = 0 4.times do |k| kk = target[i][k] if kk == 1 total += 2 ** (3-k) end end if total/10 == 1 tem += total.to_s + " " else tem += " " + total.to_s + " " end total=0 rRound = rand 4 4.times do |k| total += w[rRound][k] * target[i][k] end if total-u[rRound] >= 0 target[i][rRound] = 1 else target[i][rRound] = -1 end end total = 0 4.times do |j| 4.times do |k| total += -0.5 * w[j][k] * target[i][j] * target[i][k] end total += u[j] * target[i][j] end tem += " " + total.to_s puts tem end
BP算法
#BP Algorithm endeavor def f(t) m=1.0/(1.0+Math.exp(-t)) end num_mode=8 num_input_nerve=3 num_middle_nerve=20 num_output_nerve=2 num_learntimes=200 affix=0.5 d=Array.new(num_mode) num_mode.times do |i| d[i]=Array.new(num_output_nerve) num_output_nerve.times do |j| d[i][j]=(rand 101)/100.0 end end input=Array.new(num_mode) num_mode.times do |i| input[i]=Array.new(num_input_nerve) num_input_nerve.times do |j| input[i][j]=(rand 101)/100.0 end end v=Array.new(num_input_nerve) num_input_nerve.times do |i| v[i]=Array.new(num_middle_nerve) num_middle_nerve.times do |j| v[i][j]=(rand 101)/100.0*(-1)**(rand 2) end end r=Array.new(num_middle_nerve) num_middle_nerve.times do |i| r[i]=(rand 101)/100.0*(-1)**(rand 2) end middle=Array.new() w=Array.new(num_middle_nerve) num_middle_nerve.times do |i| w[i]=Array.new(num_output_nerve) num_output_nerve.times do |j| w[i][j]=(rand 101)/100.0*(-1)**(rand 2) end end s=Array.new(num_middle_nerve) num_middle_nerve.times do |i| s[i]=(rand 101)/100.0*(-1)**(rand 2) end output=Array.new() #starts learning num_learntimes.times do |g| num_mode.times do |k| middle=Array.new(num_middle_nerve,0) output=Array.new(num_output_nerve,0) help_w=Array.new(num_output_nerve,0) help_v=Array.new(num_middle_nerve,0) #figure out results num_middle_nerve.times do |i| num_input_nerve.times do |j| middle[i]+=input[k][j]*v[j][i] end middle[i]=f(middle[i]-r[i]) end num_output_nerve.times do |i| num_middle_nerve.times do |j| output[i]+=middle[j]*w[j][i] end output[i]=f(output[i]-s[i]) end #adjustment num_output_nerve.times do |i| help_w[i]=(d[k][i]-output[i])*output[i]*(1-output[i]) end num_middle_nerve.times do |i| num_output_nerve.times do |j| help_v[i]+=help_w[j]*w[i][j] end help_v[i]*=middle[i]*(1-middle[i]) end num_middle_nerve.times do |i| num_output_nerve.times do |j| w[i][j]+=affix*help_w[j]*middle[i] end end num_output_nerve.times do |i| s[i]-=affix*help_w[i] end num_input_nerve.times do |i| num_middle_nerve.times do |j| v[i][j]+=affix*help_v[j]*input[k][i] end end num_middle_nerve.times do |i| r[i]-=affix*help_v[i] end end #end learn 1 time end #test on learning times errorsum=0 puts "results:" num_mode.times do |k| middle=Array.new(num_middle_nerve,0) output=Array.new(num_output_nerve,0) num_middle_nerve.times do |i| num_input_nerve.times do |j| middle[i]+=input[k][j]*v[j][i] end middle[i]=f(middle[i]-r[i]) end num_output_nerve.times do |i| num_middle_nerve.times do |j| output[i]+=middle[j]*w[j][i] end output[i]=f(output[i]-s[i]) errorsum+=(d[k][i]-output[i])**2 end puts "%.2f" %output[0]+" "+"%.2f" %output[1] end errorsum/=2 puts "total deviation:"+errorsum.to_s num_learntimes=100 #starts learning num_learntimes.times do |g| num_mode.times do |k| middle=Array.new(num_middle_nerve,0) output=Array.new(num_output_nerve,0) help_w=Array.new(num_output_nerve,0) help_v=Array.new(num_middle_nerve,0) #figure out results num_middle_nerve.times do |i| num_input_nerve.times do |j| middle[i]+=input[k][j]*v[j][i] end middle[i]=f(middle[i]-r[i]) end num_output_nerve.times do |i| num_middle_nerve.times do |j| output[i]+=middle[j]*w[j][i] end output[i]=f(output[i]-s[i]) end #adjustment num_output_nerve.times do |i| help_w[i]=(d[k][i]-output[i])*output[i]*(1-output[i]) end num_middle_nerve.times do |i| num_output_nerve.times do |j| help_v[i]+=help_w[j]*w[i][j] end help_v[i]*=middle[i]*(1-middle[i]) end num_middle_nerve.times do |i| num_output_nerve.times do |j| w[i][j]+=affix*help_w[j]*middle[i] end end num_output_nerve.times do |i| s[i]-=affix*help_w[i] end num_input_nerve.times do |i| num_middle_nerve.times do |j| v[i][j]+=affix*help_v[j]*input[k][i] end end num_middle_nerve.times do |i| r[i]-=affix*help_v[i] end end #end learn 1 time end #test on learning times errorsum=0 puts "results:" num_mode.times do |k| middle=Array.new(num_middle_nerve,0) output=Array.new(num_output_nerve,0) num_middle_nerve.times do |i| num_input_nerve.times do |j| middle[i]+=input[k][j]*v[j][i] end middle[i]=f(middle[i]-r[i]) end num_output_nerve.times do |i| num_middle_nerve.times do |j| output[i]+=middle[j]*w[j][i] end output[i]=f(output[i]-s[i]) errorsum+=(d[k][i]-output[i])**2 end puts "%.2f" %output[0]+" "+"%.2f" %output[1] end errorsum/=2 puts "total deviation:"+errorsum.to_s num_learntimes=100 #starts learning num_learntimes.times do |g| num_mode.times do |k| middle=Array.new(num_middle_nerve,0) output=Array.new(num_output_nerve,0) help_w=Array.new(num_output_nerve,0) help_v=Array.new(num_middle_nerve,0) #figure out results num_middle_nerve.times do |i| num_input_nerve.times do |j| middle[i]+=input[k][j]*v[j][i] end middle[i]=f(middle[i]-r[i]) end num_output_nerve.times do |i| num_middle_nerve.times do |j| output[i]+=middle[j]*w[j][i] end output[i]=f(output[i]-s[i]) end #adjustment num_output_nerve.times do |i| help_w[i]=(d[k][i]-output[i])*output[i]*(1-output[i]) end num_middle_nerve.times do |i| num_output_nerve.times do |j| help_v[i]+=help_w[j]*w[i][j] end help_v[i]*=middle[i]*(1-middle[i]) end num_middle_nerve.times do |i| num_output_nerve.times do |j| w[i][j]+=affix*help_w[j]*middle[i] end end num_output_nerve.times do |i| s[i]-=affix*help_w[i] end num_input_nerve.times do |i| num_middle_nerve.times do |j| v[i][j]+=affix*help_v[j]*input[k][i] end end num_middle_nerve.times do |i| r[i]-=affix*help_v[i] end end #end learn 1 time end #test on learning times errorsum=0 puts "results:" num_mode.times do |k| middle=Array.new(num_middle_nerve,0) output=Array.new(num_output_nerve,0) num_middle_nerve.times do |i| num_input_nerve.times do |j| middle[i]+=input[k][j]*v[j][i] end middle[i]=f(middle[i]-r[i]) end num_output_nerve.times do |i| num_middle_nerve.times do |j| output[i]+=middle[j]*w[j][i] end output[i]=f(output[i]-s[i]) errorsum+=(d[k][i]-output[i])**2 end puts "%.2f" %output[0]+" "+"%.2f" %output[1] end puts "want to be:" num_mode.times do |k| puts "%.2f" %d[k][0]+" "+"%.2f" %d[k][1] end errorsum/=2 puts "total deviation:"+errorsum.to_s
联想记忆(Hopfield)
def ppp( aa ) note = "" 15.times do |i| if aa[i] == 1 note += " 1\t" else note += "-1\t" end end note end def change( bb, cc ) 15.times do |i| if bb[i] == 1 if ((rand 2) + (rand 2)) / 2 == 0 cc[i] = 1 else next end else next end end cc end u=Array.new(15) 15.times do |i| u[i]=(rand 101)/100.0*(-1)**(rand 2) end w = Array.new(15,0) 15.times do |i| w[i] = Array.new(15,0) 15.times do |j| if j > i w[i][j]=(rand 101)/100.0*(-1)**(rand 2) else w[i][j]=w[j][i] end end end # inital status ini_status = Array.new(15,0) 15.times do |i| if (rand 2) == 0 ini_status[i] = -1 else ini_status[i] = 1 end end puts "Forehead status",ppp(ini_status) 120.times do |i| now = rand 15 tt = 0 15.times do |j| tt += w[now][j] * ini_status[j] end if tt-u[now] >= 0 ini_status[now] = 1 else ini_status[now] = -1 end end puts "\nMemory status(->forehead status)",ppp(ini_status) temp = 0 15.times do |i| 15.times do |j| temp += -0.5 * w[i][j] * ini_status[i] * ini_status[j] end end puts "Engergy is" + temp.to_s target = [-1,1,-1,1,-1,1,1,1,1,1,-1,1,1,-1,1] puts "\nA letter target(what we want to become)",ppp(target) test = Array.new(15,-1) test = [-1,-1,-1,1,-1,1,-1,-1,-1,1,-1,-1,-1,-1,-1] puts "\nTest object(we want it to become A letter)",ppp(test) simulate = Array.new(15,0) 15.times do |i| if test[i] != target[i] simulate[i] = -1 * ini_status[i] else simulate[i] = ini_status[i] end end puts "\n#Hopfield new initial status(->memory status(generated by above 3))",ppp(simulate) 120.times do |i| now = rand 15 tt = 0 15.times do |j| tt += w[now][j] * simulate[j] end if tt-u[now] >= 0 simulate[now] = 1 else simulate[now] = -1 end end puts "\nFinal status(->hopfield new initial status(by the same w[]))",ppp(simulate) temp = 0 15.times do |i| 15.times do |j| temp += -0.5 * w[i][j] * simulate[i] * simulate[j] end end puts "Engergy is" + temp.to_s judge = "Y" 15.times do |i| if ini_status[i] != simulate[i] judge = "N" puts "\nMemory lost!!!" break end end if judge == "Y" puts "\nWe learnt it!! " end
SOFM网(输入为sin曲线。实现了点的文件生成,再用C语言画图,ruby是在不容易实现画图,除非在Mac系统里)
#SOM another try! #by Brinado on Apr. 17th, 2008 #initialization num_mode=80 num_matrix=10 num_learn=60 ita=0.5 sigma=1 #input -- Math.sin input=Array.new(num_mode) num_mode.times do |i| input[i]=Array.new(2) 2.times do |j| input[i][0]=1.0*i/num_mode input[i][1]=Math.sin(Math::PI*2.0*i/num_mode)/2+0.5 end end #w w=Array.new(100) 100.times do |i| w[i]=Array.new(2) 2.times do |j| w[i][j]=0.5+(rand 100)/1000*(-1)**(rand 2) end end #output output=Array.new(num_mode) num_mode.times do |i| output[i]=Array.new(2) 2.times do |j| output[i][j]=1.0*i/num_mode output[i][j]=Math.sin(Math::PI*2.0*i/num_mode) end end num_learn.times do |g| num_mode.times do |k| distance=Array.new(100) a,b,tt3=0,0,999 100.times do |i| tt=Math.sqrt((input[k][0]-w[i][0])**2+(input[k][1]-w[i][1])**2) #puts tt distance[i]=tt if tt<tt3 a,tt3=i,tt end end 100.times do |i| 2.times do |j| tta1,tta2=(a/9-i/9)**2+(a%9-i%9)**2,sigma**2 w[i][j]+=ita*Math.exp(-1.0*tta1/sigma)*(input[k][j]-w[i][j]) end end #insertion here... end if sigma<0.005 sigma==0.005 else sigma-=0.005 end end txt = "" f = File.open("db.txt", "w") 100.times do |i| txt = "%.15f" %w[i][0] + " " + "%.15f" %w[i][1] + " " f.write(txt) end f.close
SOFM网C语言画图实现
#include<stdio.h> #include<stdlib.h> #include<graphics.h> #define MM 19 main() { char ch[MM]; int i=0,j=0; int object[200]; int graphdriver=VGA; int graphmode=VGAHI; FILE *f; if((f=fopen("[b]c:/turboc2/brinado/db2.txt[/b]","r"))==NULL) { printf("db.txt open error.\n"); exit(0); } while(i<200) { fgets(ch,MM,f); object[i]=(int)((ch[2]-'0')*10+ch[3]-'0'+(ch[4]-'0')*0.1)*4; i++; } fclose(f); initgraph(&graphdriver,&graphmode," "); cleardevice(); /* setcolor(RED); for(j=0;j<200;j+=2) { if(j==18||j==38||j==58||j==78||j==98||j==118||j==138||j==158||j==178||j==198) { if(j!=198){line(object[j],object[j+1],object[j+20],object[j+21]);} continue; } line(object[j],object[j+1],object[j+2],object[j+3]); if(j<180) { line(object[j],object[j+1],object[j+20],object[j+21]); } } */ for(j=0;j<200;j+=2) { putpixel(object[j],object[j+1],2); putpixel(object[j]+1,object[j+1],1); putpixel(object[j],object[j+1]+1,1); putpixel(object[j],object[j+1]-1,1); putpixel(object[j]-1,object[j+1],1); } setcolor(WHITE); rectangle(0,0,639,479); getch(); closegraph(); }
GA-遗传算法
#target:[0 0 0 0 0] [1 1 1 1 1] #evaluate fitness def godbenchmark(god) result=0 10.times do |i| if i<5 if god[i]==0 result+=1 end else if god[i]==1 result+=1 end end end result #return fitness value end #crossover using single point method #change from 0~10 points totally. When set position===10, operation equals to completely change 2 chrommosomes def crossover(a,b,position) 10.times do |j| if j>=position tt=a[j] a[j]=b[j] b[j]=tt end end end #initialize chromosome chromosome=Array.new(6) 6.times do |i| chromosome[i]=Array.new(10,0) 10.times do |j| if (rand 2)==1 chromosome[i][j]=1 end end end #parameters #p_crossover=0.4 #p_mutation=3/60 #num_chromosome=6 #num_gene=10 iterates=50 step=0 record=Array.new(50) init=Array.new(6,0) 6.times do |i| init[i]=Array.new(2) init[i][0]=i init[i][1]=godbenchmark(chromosome[i]) end #pop ranking ttt,t1=init[0][1],0 6.times do |i| for j in 0..(5-i) if j==0 ttt,t1=init[0][1],0 end if init[j][1] > ttt mm1,mm2=init[j][0],init[j][1] init[j][0],init[j][1]=init[t1][0],init[t1][1] init[t1][0],init[t1][1]=mm1,mm2 ttt,t1=init[j][1],j else ttt,t1=init[j][1],j end end end #select using tournament method middle=Array.new(6) 6.times do |i| middle[i]=Array.new(10) if i==0 10.times do |j| middle[i][j]=chromosome[init[i][0]][j] end else 10.times do |j| middle[i][j]=chromosome[init[i-1][0]][j] end end end chromosome=middle #iteration begins... iterates.times do |k| #crossover begin 3.times do |i| if (rand 10)/10.0 >= 0.6 case i when 0 crossover chromosome[0],chromosome[5],(rand 10) #must change anyway!!! when 1 crossover chromosome[1],chromosome[4],(rand 10) when 2 crossover chromosome[2],chromosome[3],(rand 10) end end end #crossover end #mutation begin 6.times do |i| percentage=0.85 if (rand 100)/100.0 >= percentage tt=rand 10 if chromosome[i][tt]==0 chromosome[i][tt]=1 else chromosome[i][tt]=0 end end end #mutation end #selection begin init=Array.new(6,0) 6.times do |i| init[i]=Array.new(2) init[i][0]=i init[i][1]=godbenchmark(chromosome[i]) end #pop ranking ttt,t1=init[0][1],0 6.times do |i| for j in 0..(5-i) if j==0 ttt,t1=init[0][1],0 end if init[j][1] > ttt mm1,mm2=init[j][0],init[j][1] init[j][0],init[j][1]=init[t1][0],init[t1][1] init[t1][0],init[t1][1]=mm1,mm2 ttt,t1=init[j][1],j else ttt,t1=init[j][1],j end end end #select using tournament method middle=Array.new(6) 6.times do |i| middle[i]=Array.new(10) if i==0 10.times do |j| middle[i][j]=chromosome[init[i][0]][j] end else 10.times do |j| middle[i][j]=chromosome[init[i-1][0]][j] end end end chromosome=middle #select end record[step]=godbenchmark(chromosome[0]) step+=1 #exit condition if godbenchmark(chromosome[0])==10 break end end #print initial chromosome print="--Final Result--\n" 6.times do |i| 10.times do |j| print+=chromosome[i][j].to_s+"\t" end print+="\n" end puts print puts "\n*Note:this result is the No.#{step} generation's reproduction!","\n*Step change(fitness result) in detail:\n","\n" step.times do |i| puts "No.#{i} step best: "+record[i].to_s end
相关推荐
遗传算法神经网络是一种结合了遗传算法(Genetic Algorithm, GA)与神经网络(Neural Network, NN)的优化技术,广泛应用于复杂问题的求解,如模式识别、预测分析、函数优化等。在MATLAB环境中,可以利用其强大的...
遗传算法则可以通过内置的Global Optimization Toolbox实现,该工具箱提供了实现遗传算法的函数,如`ga`,可以方便地与神经网络训练集成。 在这个项目中,我们首先定义了机器人控制问题的具体目标,比如最小化跟踪...
总之,“神经网络遗传算法极值寻优”是结合了两种强大的优化策略,旨在解决非线性优化问题,特别是对于具有多模态和高维度特征的问题。MATLAB作为一种强大的科学计算环境,为实现这一过程提供了丰富的工具和支持。...
遗传算法和神经网络的结合,即遗传神经网络(Genetic Programming with Neural Networks,GPNN),旨在利用GA的全局搜索能力来优化神经网络的结构和参数。这种结合可以解决神经网络训练过程中可能出现的局部极小值...
在IT领域,遗传算法(Genetic Algorithm, GA)和神经网络(Neural Network, NN)是两种非常重要的技术。遗传算法是一种模拟自然选择和遗传机制的优化方法,而神经网络则是模仿人脑神经元结构的计算模型,常用于解决...
将遗传算法应用于神经网络的训练过程中,可以实现对网络结构和权重的并行优化。首先,神经元的连接权重和网络结构可以被编码为个体的基因串。接着,通过遗传算法的迭代过程,种群中的优秀网络结构会被保留下来,同时...
为了克服这一问题,研究者提出了基于神经网络(Neural Network, NNW)和遗传算法(Genetic Algorithm, GA)的工业机器人不均匀表面抛光算法。 神经网络是一种模仿生物神经系统的结构和功能的信息处理系统,通过大量...
遗传算法可以应用于神经网络的权重和偏置参数优化,通过遗传算法的搜索能力找到最佳参数组合,提升神经网络的性能。 遗传算法神经网络的主要区别在于它们的角色和应用范围。遗传算法主要是一种全局优化工具,适用...
遗传算法神经网络(GA-NN)结合了两者的优点,通常用于神经网络的参数优化。在训练神经网络时,GA负责优化权重和阈值,而不是传统的梯度下降法。GA的全局搜索能力可以避免陷入局部最优,尤其是在权重空间维度高、...
在现代数据分析与预测领域,遗传算法(Genetic Algorithm, GA)和神经网络(Neural Network, NN)是两种常用且强大的工具。本资料包“GA-BP-matlab-遗传算法优化的神经网络预测.rar”主要介绍了如何利用MATLAB实现...
综上所述,这个MATLAB程序包含了模拟退火、遗传算法和神经网络的实现,可用于解决优化和预测问题。通过这些算法的结合,我们可以解决复杂问题,如组合优化、函数拟合和模式识别等。在实际应用中,用户可以根据具体...
这种方法被称为遗传算法优化的神经网络(GA-NN),在许多实际问题中表现出优越性能,例如在模式识别、预测模型构建、控制系统设计等方面。 例如,在神经网络的训练过程中,初始权重的设定对网络性能有很大影响。...
遗传算法(Genetic Algorithm, GA)源自生物进化论,模拟了自然选择、遗传和突变的过程,而神经网络(Neural Network, NN)则是一种模仿人脑神经元结构的计算模型,用于学习和预测。将两者结合,可以利用遗传算法的...
遗传算法(Genetic Algorithms, GA)与神经网络(Neural Networks, NN)是两种在人工智能领域广泛应用的计算方法。它们分别模拟了生物进化过程和人脑神经元的连接方式,来解决复杂问题。 遗传算法是一种优化技术,...
2. pingpong_GA_NN.m:这可能是整个项目的主函数或核心算法,结合了遗传算法(GA)和神经网络(NN),用于乒乓球AI的训练和决策过程。 3. run.m:这可能是一个启动或运行整个程序的脚本,调用其他子函数以执行整个...
9. "GAbp.rar":这个文件很可能包含了一个用遗传算法优化BP神经网络的完整代码库,可以帮助读者实践和理解遗传算法对BP网络的优化过程。 10. "用遗传算法优化BP神经网络的Matlab编程实例.txt":提供了具体的Matlab...
**基于遗传算法优化的神经网络预测** 神经网络(Neural ...为了更好地理解和应用这个代码,建议熟悉MATLAB编程以及遗传算法和神经网络的基本概念。同时,对数据预处理、模型验证和参数调整的理解也是至关重要的。
遗传算法(Genetic Algorithm, GA)与小波神经网络(Wavelet Neural Network, WNN)是两种在计算科学和人工智能领域广泛应用的技术。本篇将详细阐述这两种技术的原理及其结合应用。 遗传算法是一种受到生物进化过程...
在神经网络领域,遗传算法被广泛应用于权值和阈值的优化,以提高网络的性能和准确性。标题中的"遗传算法优化神经网络代码,保证可用"表明这是一个使用遗传算法对神经网络模型的参数进行优化的实现,确保了代码的可...