转:http://www.360doc.com/content/14/0402/17/16635465_365774770.shtml
1.起因(Why HBase Coprocessor)
HBase作为列族数据库最经常被人诟病的特性包括:无法轻易建立“二级索引”,难以执行求和、计数、排序等操作。比如,在旧版本的(<0.92)Hbase中,统计数据表的总行数,需要使用Counter方法,执行一次MapReduce Job才能得到。虽然HBase在数据存储层中集成了MapReduce,能够有效用于数据表的分布式计算。然而在很多情况下,做一些简单的相加或者聚合计算的时候,如果直接将计算过程放置在server端,能够减少通讯开销,从而获得很好的性能提升。于是,HBase在0.92之后引入了协处理器(coprocessors),实现一些激动人心的新特性:能够轻易建立二次索引、复杂过滤器(谓词下推)以及访问控制等。
2.灵感来源( Source of Inspration)
HBase协处理器的灵感来自于Jeff Dean 09年的演讲( P66-67)。它根据该演讲实现了类似于bigtable的协处理器,包括以下特性:
- 每个表服务器的任意子表都可以运行代码
- 客户端的高层调用接口(客户端能够直接访问数据表的行地址,多行读写会自动分片成多个并行的RPC调用)
- 提供一个非常灵活的、可用于建立分布式服务的数据模型
- 能够自动化扩展、负载均衡、应用请求路由
3.细节剖析(Implementation)
协处理器分两种类型,系统协处理器可以全局导入region server上的所有数据表,表协处理器即是用户可以指定一张表使用协处理器。协处理器框架为了更好支持其行为的灵活性,提供了两个不同方面的插件。一个是观察者(observer),类似于关系数据库的触发器。另一个是终端(endpoint),动态的终端有点像存储过程。
3.1观察者(Observer)
观察者的设计意图是允许用户通过插入代码来重载协处理器框架的upcall方法,而具体的事件触发的callback方法由HBase的核心代码来执行。协处理器框架处理所有的callback调用细节,协处理器自身只需要插入添加或者改变的功能。
以HBase0.92版本为例,它提供了三种观察者接口:
- RegionObserver:提供客户端的数据操纵事件钩子:Get、Put、Delete、Scan等。
- WALObserver:提供WAL相关操作钩子。
- MasterObserver:提供DDL-类型的操作钩子。如创建、删除、修改数据表等。
这些接口可以同时使用在同一个地方,按照不同优先级顺序执行.用户可以任意基于协处理器实现复杂的HBase功能层。HBase有很多种事件可以触发观察者方法,这些事件与方法从HBase0.92版本起,都会集成在HBase API中。不过这些API可能会由于各种原因有所改动,不同版本的接口改动比较大,具体参考Java Doc。
RegionObserver工作原理,如图1所示。更多关于Observer细节请参见HBaseBook的第9.6.3章节。
图1 RegionObserver工作原理
3.2终端(Endpoint)
终端是动态RPC插件的接口,它的实现代码被安装在服务器端,从而能够通过HBase RPC唤醒。客户端类库提供了非常方便的方法来调用这些动态接口,它们可以在任意时候调用一个终端,它们的实现代码会被目标region远程执行,结果会返回到终端。用户可以结合使用这些强大的插件接口,为HBase添加全新的特性。终端的使用,如下面流程所示:
- 定义一个新的protocol接口,必须继承CoprocessorProtocol.
- 实现终端接口,该实现会被导入region环境执行。
- 继承抽象类BaseEndpointCoprocessor.
- 在客户端,终端可以被两个新的HBase Client API调用 。单个region:HTableInterface.coprocessorProxy(Class<T> protocol, byte[] row) 。rigons区域:HTableInterface.coprocessorExec(Class<T> protocol, byte[] startKey, byte[] endKey, Batch.Call<T,R> callable)
整体的终端调用过程范例,如图2所示:
图2 终端调用过程范例
4.编程实践(Code Example)
在该实例中,我们通过计算HBase表中行数的一个实例,来真实感受协处理器 的方便和强大。在旧版的HBase我们需要编写MapReduce代码来汇总数据表中的行数,在0.92以上的版本HBase中,只需要编写客户端的代码即可实现,非常适合用在WebService的封装上。
4.1启用协处理器 Aggregation(Enable Coprocessor Aggregation)
我们有两个方法:1.启动全局aggregation,能过操纵所有的表上的数据。通过修改hbase-site.xml这个文件来实现,只需要添加如下代码:
<property> <name>hbase.coprocessor.user.region.classes</name> <value>org.apache.hadoop.hbase.coprocessor.AggregateImplementation</value> </property>
2.启用表aggregation,只对特定的表生效。通过HBase Shell 来实现。
(1)disable指定表。hbase> disable 'mytable'
(2)添加aggregation hbase> alter 'mytable', METHOD => 'table_att','coprocessor'=>'|org.apache.hadoop.hbase.coprocessor.AggregateImplementation||'
(3)重启指定表 hbase> enable 'mytable'
4.2统计行数代码(Code Snippet)
public class MyAggregationClient { private static final byte[] TABLE_NAME = Bytes.toBytes("mytable"); private static final byte[] CF = Bytes.toBytes("vent"); public static void main(String[] args) throws Throwable { Configuration customConf = new Configuration(); customConf.setStrings("hbase.zookeeper.quorum", "node0,node1,node2"); //提高RPC通信时长 customConf.setLong("hbase.rpc.timeout", 600000); //设置Scan缓存 customConf.setLong("hbase.client.scanner.caching", 1000); Configuration configuration = HBaseConfiguration.create(customConf); AggregationClient aggregationClient = new AggregationClient( configuration); Scan scan = new Scan(); //指定扫描列族,唯一值 scan.addFamily(CF); long rowCount = aggregationClient.rowCount(TABLE_NAME, null, scan); System.out.println("row count is " + rowCount); } }
相关推荐
2000-2021年中国科技统计年鉴(分省年度)面板数据集-最新更新.zip
PPT保护工具PDFeditor专业版-精心整理.zip
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
考研英语真题及详解-精心整理.zip
Jupyter-Notebook
全国电子地图行政区划道路水系数据-最新shp.zip
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
地级市进出口贸易及外资利用数据(297城)-最新.zip
HengCe-18900-2024-2030中国皮革制品市场现状研究分析与发展前景预测报告-样本.docx
猪脚饭超好吃 java制作的小游戏,作为巩固java知识之用.zip
【基于Python的大麦网自动抢票工具的设计与实现】 随着互联网技术的发展,网络购票已经成为人们生活中不可或缺的一部分。尤其是在文化娱乐领域,如音乐会、演唱会、戏剧等活动中,热门演出的门票往往在开售后瞬间就被抢购一空。为了解决这个问题,本论文探讨了一种基于Python的自动抢票工具的设计与实现,旨在提高购票的成功率,减轻用户手动抢票的压力。 Python作为一种高级编程语言,因其简洁明了的语法和丰富的第三方库,成为了开发自动化工具的理想选择。Python的特性使得开发过程高效且易于维护。本论文深入介绍了Python语言的基础知识,包括数据类型、控制结构、函数以及模块化编程思想,这些都是构建抢票工具的基础。 自动化工具在现代社会中广泛应用,尤其在网络爬虫、自动化测试等领域。在抢票工具的设计中,主要利用了自动化工具的模拟用户行为、数据解析和定时任务等功能。本论文详细阐述了如何使用Python中的Selenium库来模拟浏览器操作,通过识别网页元素、触发事件,实现对大麦网购票流程的自动化控制。同时,还讨论了BeautifulSoup和requests库在抓取和解析网页数据中的应用。 大麦网作为国内知名的票务平台,其网站结构和购票流程对于抢票工具的实现至关重要。论文中介绍了大麦网的基本情况,包括其业务模式、用户界面特点以及购票流程,为工具的设计提供了实际背景。 在系统需求分析部分,功能需求主要集中在自动登录、监控余票、自动下单和异常处理等方面。抢票工具需要能够自动填充用户信息,实时监控目标演出的票务状态,并在有票时立即下单。此外,为了应对可能出现的网络延迟或服务器错误,工具还需要具备一定的错误恢复能力。性能需求则关注工具的响应速度和稳定性,要求在大量用户同时使用时仍能保持高效运行。 在系统设计阶段,论文详细描述了整体架构,包括前端用户界面、后端逻辑处理以及与大麦网交互的部分。在实现过程中,采用了多线程技术以提高并发性,确保在抢票关键环节的快速响应。此外,还引入了异常处理机制,以应对网络故障或程序错误。 测试与优化是确保抢票工具质量的关键步骤。论文中提到了不同场景下的测试策略,如压力测试、功能测试和性能测试,以验证工具的有效性和稳定性。同时,通过对抢票算法的不断优化,提高工具的成功率。 论文讨论了该工具可能带来的社会影响,包括对消费者体验的改善、对黄牛现象的抑制以及可能引发的公平性问题。此外,还提出了未来的研究方向,如增加多平台支持、优化抢票策略以及考虑云服务的集成,以进一步提升抢票工具的实用性。 本论文全面介绍了基于Python的大麦网自动抢票工具的设计与实现,从理论到实践,从需求分析到系统优化,为读者提供了一个完整的开发案例,对于学习Python编程、自动化工具设计以及理解网络购票市场的运作具有重要的参考价值。
校园驿站全天候辅助取货管理系统 SSM毕业设计 附带论文 启动教程:https://www.bilibili.com/video/BV1GK1iYyE2B
1970年至2010年美国所有乳制品的供应和利用情况
java基础 java_leetcode题解之Possible Bipartition.java
该开源项目为阿里巴巴数据库事业部精心打造的druid连接池设计源码,包含4689个文件,涵盖4069个Java源文件、297个SQL脚本、102个文本文件以及其他多种文件类型。druid连接池以其独特的监控功能,旨在为数据库连接管理提供高效、可靠的解决方案。项目文件类型丰富,包括HTML、JavaScript、CSS和Shell脚本等,适用于多种开发需求。
Jupyter-Notebook
金融风险管理计算手册(CoVaR)最新版.zip
网上选课系统 SSM毕业设计 附带论文 启动教程:https://www.bilibili.com/video/BV1GK1iYyE2B
Jupyter-Notebook
Jupyter-Notebook