转一个牛人的hadoop join博客
转 http://dongxicheng.org/mapreduce/hadoop-join-two-tables/
1. 概述
在传统数据库(如:MYSQL)中,JOIN操作是非常常见且非常耗时的。而在HADOOP中进行JOIN操作,同样常见且耗时,由于Hadoop的独特设计思想,当进行JOIN操作时,有一些特殊的技巧。
本文首先介绍了Hadoop上通常的JOIN实现方法,然后给出了几种针对不同输入数据集的优化方法。
2. 常见的join方法介绍
假设要进行join的数据分别来自File1和File2.
2.1 reduce side join
reduce side join是一种最简单的join方式,其主要思想如下:
在map阶段,map函数同时读取两个文件File1和File2,为了区分两种来源的key/value数据对,对每条数据打一个标签(tag),比如:tag=0表示来自文件File1,tag=2表示来自文件File2。即:map阶段的主要任务是对不同文件中的数据打标签。
在reduce阶段,reduce函数获取key相同的来自File1和File2文件的value list, 然后对于同一个key,对File1和File2中的数据进行join(笛卡尔乘积)。即:reduce阶段进行实际的连接操作。
2.2 map side join
之所以存在reduce side join,是因为在map阶段不能获取所有需要的join字段,即:同一个key对应的字段可能位于不同map中。Reduce side join是非常低效的,因为shuffle阶段要进行大量的数据传输。
Map side join是针对以下场景进行的优化:两个待连接表中,有一个表非常大,而另一个表非常小,以至于小表可以直接存放到内存中。这样,我们可以将小表复制多份,让每个map task内存中存在一份(比如存放到hash table中),然后只扫描大表:对于大表中的每一条记录key/value,在hash table中查找是否有相同的key的记录,如果有,则连接后输出即可。
为了支持文件的复制,Hadoop提供了一个类DistributedCache,使用该类的方法如下:
(1)用户使用静态方法DistributedCache.addCacheFile()指定要复制的文件,它的参数是文件的URI(如果是HDFS上的文件,可以这样:hdfs://namenode:9000/home/XXX/file,其中9000是自己配置的NameNode端口号)。JobTracker在作业启动之前会获取这个URI列表,并将相应的文件拷贝到各个TaskTracker的本地磁盘上。(2)用户使用DistributedCache.getLocalCacheFiles()方法获取文件目录,并使用标准的文件读写API读取相应的文件。
2.3 SemiJoin
SemiJoin,也叫半连接,是从分布式数据库中借鉴过来的方法。它的产生动机是:对于reduce side join,跨机器的数据传输量非常大,这成了join操作的一个瓶颈,如果能够在map端过滤掉不会参加join操作的数据,则可以大大节省网络IO。
实现方法很简单:选取一个小表,假设是File1,将其参与join的key抽取出来,保存到文件File3中,File3文件一般很小,可以放到内存中。在map阶段,使用DistributedCache将File3复制到各个TaskTracker上,然后将File2中不在File3中的key对应的记录过滤掉,剩下的reduce阶段的工作与reduce side join相同。
更多关于半连接的介绍,可参考:半连接介绍:http://wenku.baidu.com/view/ae7442db7f1922791688e877.html
2.4 reduce side join + BloomFilter
在某些情况下,SemiJoin抽取出来的小表的key集合在内存中仍然存放不下,这时候可以使用BloomFiler以节省空间。
BloomFilter最常见的作用是:判断某个元素是否在一个集合里面。它最重要的两个方法是:add() 和contains()。最大的特点是不会存在false negative,即:如果contains()返回false,则该元素一定不在集合中,但会存在一定的true negative,即:如果contains()返回true,则该元素可能在集合中。
因而可将小表中的key保存到BloomFilter中,在map阶段过滤大表,可能有一些不在小表中的记录没有过滤掉(但是在小表中的记录一定不会过滤掉),这没关系,只不过增加了少量的网络IO而已。
更多关于BloomFilter的介绍,可参考:http://blog.csdn.net/jiaomeng/article/details/1495500
3. 二次排序
在Hadoop中,默认情况下是按照key进行排序,如果要按照value进行排序怎么办?即:对于同一个key,reduce函数接收到的value list是按照value排序的。这种应用需求在join操作中很常见,比如,希望相同的key中,小表对应的value排在前面。
有两种方法进行二次排序,分别为:buffer and in memory sort和 value-to-key conversion。
对于buffer and in memory sort,主要思想是:在reduce()函数中,将某个key对应的所有value保存下来,然后进行排序。 这种方法最大的缺点是:可能会造成out of memory。
对于value-to-key conversion,主要思想是:将key和部分value拼接成一个组合key(实现WritableComparable接口或者调用setSortComparatorClass函数),这样reduce获取的结果便是先按key排序,后按value排序的结果,需要注意的是,用户需要自己实现Paritioner,以便只按照key进行数据划分。Hadoop显式的支持二次排序,在Configuration类中有个setGroupingComparatorClass()方法,可用于设置排序group的key值,具体参考:http://www.cnblogs.com/xuxm2007/archive/2011/09/03/2165805.html
4. 后记
最近一直在找工作,由于简历上写了熟悉Hadoop,所以几乎每个面试官都会问一些Hadoop相关的东西,而 Hadoop上Join的实现就成了一道必问的问题,而极个别公司还会涉及到DistributedCache原理以及怎样利用DistributedCache进行Join操作。为了更好地应对这些面试官,特整理此文章。
O(∩_∩)O哈哈~
5. 参考资料
(1) 书籍《Data-Intensive Text Processing with MapReduce》 page 60~67 Jimmy Lin and Chris Dyer,University of Maryland, College Park
(2) 书籍《Hadoop In Action》page 107~131
(3) mapreduce的二次排序 SecondarySort:http://www.cnblogs.com/xuxm2007/archive/2011/09/03/2165805.html
(4) 半连接介绍:http://wenku.baidu.com/view/ae7442db7f1922791688e877.html
(5) BloomFilter介绍:http://blog.csdn.net/jiaomeng/article/details/1495500
相关推荐
本文将深入探讨Map JOIN和Reduce JOIN两种在Hadoop中实现JOIN的方法,并通过代码示例来阐述它们的工作原理。 1. Map JOIN: Map JOIN在Hadoop中主要应用于小表与大表的连接。小表的数据可以完全加载到内存中,而大...
### Hadoop Join Implementation:关键技术与优化策略 #### 摘要 在大数据处理领域,Hadoop作为主流的大规模数据处理框架之一,其MapReduce模型在并行数据处理方面展现出巨大优势。然而,对于数据间的连接操作(即...
本文将深入探讨如何使用Hadoop和MapReduce进行高效的Join查询,并解析如何通过`hadoop_join.jar`这个工具来实现这一过程。 Hadoop是Apache软件基金会开发的一个开源分布式计算框架,它的核心组件包括HDFS(Hadoop ...
hadoop-0.21.0-datajoin.jar
标题 "Hadoop Reduce Join及基于MRV2 API 重写" 涉及到的是大数据处理框架Hadoop中的一个重要操作,即数据连接(Join)。在Hadoop MapReduce中,Reduce Join是一种实现大规模数据集间连接的高效方法。本文将探讨...
文件汗有三个java类,两个测试文件txt ReduceClass.java MapClass.java TaggedRecordWritable.java customers.txt ...经过亲自测试,可以将两个文件中的信息以groupby的key关联起来,查出类似数据库的join.
org.apache.hadoop.contrib.utils.join org.apache.hadoop.examples org.apache.hadoop.examples.dancing org.apache.hadoop.examples.pi org.apache.hadoop.examples.pi.math org.apache.hadoop.examples....
具体要掌握的五个主题分别是:大数据分布式集群搭建(高可用性,HA),构建企业级MapReduce项目,Hadoop和Spark的源码编译,以及Zookeeper和MapReduce的高级Join操作。 描述部分列举了一些具体的知识点,包含搭建...
在数据处理能力方面,Elasticsearch的聚合统计和全文搜索功能虽然强大,但其并不支持SQL中的join或子查询等复杂数据处理操作。Elasticsearch也不支持中间数据输出或数据集转换,因此在处理需要复杂计算逻辑的任务时...
在Hadoop MapReduce环境中,处理大数据时经常遇到多表关联(Join)的需求,尤其是在复杂的业务逻辑中。MapReduce提供了一种分布式计算模型,能够高效地处理大规模数据集,但面对多表关联,尤其是多个Job之间的依赖和...
作者还提供了使用高级特性如map端join和链式映射的示例。为了将理论与实践相结合,作者引导读者一步一步开发一个实际的MapReduce应用,这将帮助读者深入了解真实的Hadoop项目。 标签中提到的“大数据”是指需要通过...
4. 流处理改进:Spark Streaming引入了新的DStream操作,如join和window,增强了实时流处理的能力。 二、Hadoop 2.7集成 Hadoop 2.7是一个稳定且广泛使用的分布式存储和计算框架,其YARN资源管理系统为Spark提供了...
在大数据处理领域,Hadoop MapReduce 是一种广泛使用的分布式计算框架。在处理涉及多数据集的任务时,Join 操作是必不可少的,它用于合并来自不同数据源的相关数据。本文主要探讨了两种 MapReduce 中的 Join 实现:...
在处理如URL缩短服务(如Hush)这样的大数据场景时,HBase能够有效地存储和检索大量短链接数据,而不像RDBMS那样需要复杂的JOIN操作。 总之,Hadoop和HBase在大数据处理中提供了RDBMS无法比拟的优势,尤其是在非...
本课程设计主要围绕如何使用Hadoop的MapReduce实现SQL中的统计、GROUP BY和JOIN操作,这是一次深入理解大数据处理机制的实践过程。 首先,让我们来探讨SQL的统计功能。在SQL中,统计通常涉及到COUNT、SUM、AVG、MAX...
在大数据领域,Hadoop和Hive是两个至关重要的技术组件,它们在处理大规模数据存储和分析方面发挥着关键作用。本篇文章将详细探讨Hadoop和Hive的相关面试知识点,帮助求职者更好地准备大数据领域的面试。 首先,我们...
课程内容还涉及了如何从nginx日志中提取访问量最高的IP地址,使用Unix/Linux的工具链,如awk、grep、sort、join等进行简单的日志分析。 综上所述,本课程深入介绍了Hadoop在Web日志分析中的应用,从基本的日志概念...
通过HiveQL,用户可以执行复杂的分析任务,如JOIN、窗口函数和自定义函数。 总结,Hive是Hadoop生态系统中的一个重要组成部分,它为数据分析师提供了便捷的SQL接口,简化了大数据处理的复杂性,特别适用于需要对...
实验5进一步深入MapReduce编程,可能涉及复杂的数据处理逻辑,如join操作、自定义分区、Combiner使用等。 【Hadoop气象数据集实战】 实验6通过处理气象数据集,将理论知识应用于实际场景,提升对Hadoop处理大数据...