Task not serializable是Spark开发过程最令人头疼的问题之一,这里记录下出现这个问题的两个实例,一个是自己遇到的,另一个是stackoverflow上看到。等有时间了再仔细探究出现Task not serialiazable的各种原因以及出现问题后如何快速定位问题的所在,至少目前阶段碰到此类问题,没有什么章法
1.
package spark.examples.streaming import org.apache.spark.SparkConf import org.apache.spark.streaming._ import scala.collection.mutable object NetCatStreamingWordCount3 { def main(args: Array[String]) { val conf = new SparkConf().setAppName("NetCatWordCount") conf.setMaster("local[3]") val ssc = new StreamingContext(conf, Seconds(5)) val lines = ssc.socketTextStream("localhost", 9999) lines.foreachRDD(rdd => { rdd.foreachPartition(partitionIterable=> { val map = mutable.Map[String, String]() while(partitionIterable.hasNext) { val v = partitionIterable.next() map += v ->v } map.foreach(entry => { if (entry._1.equals("abc")) { return; //return语句导致Task无法序列化,两个字:诡异,三个字:太诡异 } }) }) }) ssc.start() ssc.awaitTermination() } }
异常信息:
org.apache.spark.SparkException: Task not serializable at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:166) at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:158) at org.apache.spark.SparkContext.clean(SparkContext.scala:1622) at org.apache.spark.rdd.RDD.foreachPartition(RDD.scala:805) at spark.examples.streaming.NetCatStreamingWordCount3$$anonfun$main$1.apply(NetCatStreamingWordCount3.scala:15) at spark.examples.streaming.NetCatStreamingWordCount3$$anonfun$main$1.apply(NetCatStreamingWordCount3.scala:14) at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1.apply(DStream.scala:534) at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1.apply(DStream.scala:534) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:42) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:40) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:40) at scala.util.Try$.apply(Try.scala:161) at org.apache.spark.streaming.scheduler.Job.run(Job.scala:32) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:176) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:176) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:176) at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:175) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:744) Caused by: java.io.NotSerializableException: java.lang.Object Serialization stack: - object not serializable (class: java.lang.Object, value: java.lang.Object@143d53c) - field (class: spark.examples.streaming.NetCatStreamingWordCount3$$anonfun$main$1, name: nonLocalReturnKey1$1, type: class java.lang.Object) - object (class spark.examples.streaming.NetCatStreamingWordCount3$$anonfun$main$1, <function1>) - field (class: spark.examples.streaming.NetCatStreamingWordCount3$$anonfun$main$1$$anonfun$apply$1, name: $outer, type: class spark.examples.streaming.NetCatStreamingWordCount3$$anonfun$main$1) - object (class spark.examples.streaming.NetCatStreamingWordCount3$$anonfun$main$1$$anonfun$apply$1, <function1>) at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:38) at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47) at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:80) at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:164) ... 20 more Exception in thread "main" org.apache.spark.SparkException: Task not serializable at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:166) at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:158) at org.apache.spark.SparkContext.clean(SparkContext.scala:1622) at org.apache.spark.rdd.RDD.foreachPartition(RDD.scala:805) at spark.examples.streaming.NetCatStreamingWordCount3$$anonfun$main$1.apply(NetCatStreamingWordCount3.scala:15) at spark.examples.streaming.NetCatStreamingWordCount3$$anonfun$main$1.apply(NetCatStreamingWordCount3.scala:14) at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1.apply(DStream.scala:534) at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1.apply(DStream.scala:534) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:42) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:40) at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:40) at scala.util.Try$.apply(Try.scala:161) at org.apache.spark.streaming.scheduler.Job.run(Job.scala:32) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:176) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:176) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:176) at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57) at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:175) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:744) Caused by: java.io.NotSerializableException: java.lang.Object Serialization stack: - object not serializable (class: java.lang.Object, value: java.lang.Object@143d53c) - field (class: spark.examples.streaming.NetCatStreamingWordCount3$$anonfun$main$1, name: nonLocalReturnKey1$1, type: class java.lang.Object) - object (class spark.examples.streaming.NetCatStreamingWordCount3$$anonfun$main$1, <function1>) - field (class: spark.examples.streaming.NetCatStreamingWordCount3$$anonfun$main$1$$anonfun$apply$1, name: $outer, type: class spark.examples.streaming.NetCatStreamingWordCount3$$anonfun$main$1) - object (class spark.examples.streaming.NetCatStreamingWordCount3$$anonfun$main$1$$anonfun$apply$1, <function1>) at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:38) at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47) at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:80) at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:164) ... 20 more
2.
package spark.examples.rdd import org.apache.spark.{SparkConf, SparkContext} object TaskNotSerializationTest { def main(args: Array[String]) { new Testing().runJob } } class Testing { val conf = new SparkConf().setMaster("local").setAppName("TaskNotSerializationTest") val sc = new SparkContext(conf) val rdd = sc.parallelize(List(1, 2, 3)) def runJob = { rdd.map(someFunc).collect().foreach(println) } def someFunc(a: Int) = a + 1 }
异常信息:
Exception in thread "main" org.apache.spark.SparkException: Task not serializable at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:166) at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:158) at org.apache.spark.SparkContext.clean(SparkContext.scala:1622) at org.apache.spark.rdd.RDD.map(RDD.scala:286) at spark.examples.rdd.Testing.runJob(TaskNotSerializationTest.scala:20) at spark.examples.rdd.TaskNotSerializationTest$.main(TaskNotSerializationTest.scala:10) at spark.examples.rdd.TaskNotSerializationTest.main(TaskNotSerializationTest.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at com.intellij.rt.execution.application.AppMain.main(AppMain.java:134) Caused by: java.io.NotSerializableException: spark.examples.rdd.Testing Serialization stack: - object not serializable (class: spark.examples.rdd.Testing, value: spark.examples.rdd.Testing@b8972) - field (class: spark.examples.rdd.Testing$$anonfun$runJob$1, name: $outer, type: class spark.examples.rdd.Testing) - object (class spark.examples.rdd.Testing$$anonfun$runJob$1, <function1>) at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:38) at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47) at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:80) at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:164) ... 11 more
第二个问题:stackoverflow上有比较详细的讨论:
http://stackoverflow.com/questions/22592811/task-not-serializable-java-io-notserializableexception-when-calling-function-ou
相关推荐
org.apache.spark.SparkException: Task not serializable at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:298) at org.apache.spark.util.ClosureCleaner$.org$apache$spark...
Job aborted due to stage failure: Task not serializable 缺失依赖 执行 start-all.sh 错误 - Connection refused Spark 组件之间的网络连接问题 性能 & 优化 一个 RDD 有多少个分区 数据本地性 Spark Streaming ...
Python json 错误xx is not JSON serializable解决办法 在使用json的时候经常会遇到xxx is not JSON serializable,也就是无法序列化某些对象。经常使用django的同学知道django里面有个自带的Encoder来序列化时间等...
本教程将详细讲解如何通过Serializable接口来实现Intent对象的传递。 首先,了解Serializable接口。在Java中,Serializable是用于序列化和反序列化的接口。当一个类实现了这个接口,它的实例就可以被转化为一串字节...
在Java编程中,`Serializable`接口是用于对象序列化的重要工具。对象序列化是指将一个对象的状态转换为字节流的过程,以便存储或通过网络进行传输。另一方面,`Stream`通常指的是I/O流,它是Java处理输入/输出数据的...
Serializable的增删改查操作,已经经过验证,可以直接运行。
java->serializable深入了解 java->serializable深入了解 java->serializable深入了解
例如,`MySerializable.java`和`Product.java`两个文件可能分别代表实现了`Serializable`接口的类。`MySerializable`可能是自定义的一个示例类,而`Product`可能是表示产品的类,它们都包含了可序列化的属性。 在`...
在Laravel框架中,"serializable-values"是一个关键概念,它涉及到对象的序列化与反序列化,这对于数据存储和传输至关重要。在这个话题下,我们将深入探讨Laravel如何处理可序列化的值,以及如何利用Luminark提供的...
### C#中Serializable的作用与对象序列化详解 #### 一、引言 在现代软件开发中,特别是基于.NET框架的应用程序开发中,对象序列化是一项非常重要的技术。它允许将对象的状态转换为一种持久的形式(如文件或网络传输...
在Java中,如果一个类需要支持序列化,那么该类需要实现`java.io.Serializable`接口,虽然这个接口没有定义任何方法,但是它的存在作为一个标记,表明该类的对象可以被序列化。 序列化的优点主要有以下几点: 1. **...
本文将深入探讨两种主要的序列化方式:Serializable和Parcelable,并比较它们的优缺点以及适用场景。 首先,我们来了解什么是序列化。序列化是将对象的状态转换为可存储或可传输的形式的过程。在Android中,这个...
本篇将详细介绍如何通过`Bundle` 传递基本数据类型、Parcelable类型数据以及Serializable类型数据。 ### 一、基本数据类型的传递 在Android中,基本数据类型包括int、boolean、float、double、char等。通过`put()`...
在Java编程语言中,`Serializable`接口是一个非常重要的概念,它是实现对象持久化的关键。本文将深入探讨`Serializable`接口的细节,以及与其相关的高级知识。 `Serializable`接口是Java中的一个标记接口,没有包含...
public interface Row extends scala.Serializable ``` 通过以上介绍,我们可以看到 Spark 为大数据处理提供了强大的支持。无论是从数据读取、转换还是结果输出,Spark 均提供了一系列高度优化的功能,使得开发者...
### Java Serializable(序列化)的理解和总结 #### 一、序列化的定义与目的 序列化是一种将对象的状态转换为可以存储或传输的形式的过程。在Java中,如果一个类实现了`Serializable`接口,那么该类的对象就可以被...
java 序列化 对象 Serializable 写着玩的Demo 简单 实用
【Serializable]在C#中的作用主要涉及到.NET框架中的对象序列化技术。对象序列化是将一个对象的状态转换为可存储或可传输的形式的过程,而[Serializable]是C#中用于标记一个类,表明该类的对象可以被序列化的特性。...