`
bit1129
  • 浏览: 1068058 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析

 
阅读更多

 

以如下代码为例(SocketInputDStream):

Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据的流转需要关注如下几个问题:

1. 数据存储到什么位置了

2. 数据存储的结构如何?

3. 数据什么时候被读取

4. 读取到的数据(batch interval)如何转换为RDD

 

1. SocketReceiver#receive

  /** Create a socket connection and receive data until receiver is stopped */
  def receive() {
    var socket: Socket = null
    try {
      logInfo("Connecting to " + host + ":" + port)
      socket = new Socket(host, port)
      logInfo("Connected to " + host + ":" + port)
      val iterator = bytesToObjects(socket.getInputStream())
      while(!isStopped && iterator.hasNext) {
        store(iterator.next)
      }
      logInfo("Stopped receiving")
      restart("Retrying connecting to " + host + ":" + port)
    } catch {
      case e: java.net.ConnectException =>
        restart("Error connecting to " + host + ":" + port, e)
      case t: Throwable =>
        restart("Error receiving data", t)
    } finally {
      if (socket != null) {
        socket.close()
        logInfo("Closed socket to " + host + ":" + port)
      }
    }
  }

 

2. SocketReceiver#receive=>SocketReceiver#store

 

  /**
   * Store a single item of received data to Spark's memory.
   * These single items will be aggregated together into data blocks before
   * being pushed into Spark's memory.
   */
  def store(dataItem: T) {
    executor.pushSingle(dataItem)
  }

 

数据存储作为Executor功能之一,store方法调用了executor中的pushSingle操作,此时的Single可以理解为一次数据读取,而dataItem就是一次读取的数据对象

 

 

3. SocketReceiver#store=>executor.pushSingle(ReceiverSupervisorImpl.pushSingle)

 

  /** Push a single record of received data into block generator. */
  def pushSingle(data: Any) {
    blockGenerator.addData(data)
  }

 

数据放入到了blockGenerator数据结构中了,blockGenerator,类型为BlockGenerator,顾名思义是一个block生成器,所谓的block生成器,是指Spark Streaming每隔一段时间(默认200毫秒,   private val blockInterval = conf.getLong("spark.streaming.blockInterval", 200))将接收到的数据合并成一个block,然后将这个block写入到BlockManager,继续沿着个思路分析

 

 

4. executor.pushSingle=>BlockGenerator.addData

  /**
   * Push a single data item into the buffer. All received data items
   * will be periodically pushed into BlockManager.
   */
  def addData (data: Any): Unit = synchronized {
    waitToPush() ///通过阻塞控制Push的速度
    currentBuffer += data,将数据追加到currentBuffer中
  }

 

 当数据写入到currentBuffer中之后,似乎线索已经断了。事实上是BlockGenerator内部开启的两个线程(BlockIntervalTimer和BlockPushingThread)在背后继续处理currentBuffer

 

BlockIntervalTimer默认每200毫秒执行一次updateCurrentBufferer,该函数的功能是将类型为ArrayBuffer的currentBuffer合并成一个小的Block

  private val blockInterval = conf.getLong("spark.streaming.blockInterval", 200)
  private val blockIntervalTimer =
    new RecurringTimer(clock, blockInterval, updateCurrentBuffer, "BlockGenerator")
 

 

 BlockPushingThread是通过循环调用keepPushingBlocks将BlockIntervalTimer创建的各个Block写入到BlockManager中,

private val blockPushingThread = new Thread() { override def run() { keepPushingBlocks() } }
 

 

 上面说到的两个线程的同步是通过ArrayBlockQueue实现的

  private val blockQueueSize = conf.getInt("spark.streaming.blockQueueSize", 10)
  private val blocksForPushing = new ArrayBlockingQueue[Block](blockQueueSize)
 

 

 

5. BlockGenerator#updateCurrentBuffer

updateCurrentBuffer由BlockIntervalTimer线程执行

 

  /** Change the buffer to which single records are added to. */
  private def updateCurrentBuffer(time: Long): Unit = synchronized {
    try {
      val newBlockBuffer = currentBuffer 
      currentBuffer = new ArrayBuffer[Any] //这两句对currentBuffere这样的操作,是否有线程安全问题?没有,因为currentBuffer已经标注为@volatile类型的变量
      if (newBlockBuffer.size > 0) {
        val blockId = StreamBlockId(receiverId, time - blockInterval) //构造StreamBlockId
        val newBlock = new Block(blockId, newBlockBuffer) //创建出一个Block
        listener.onGenerateBlock(blockId) //通知谁?空实现,listener是作为BlockGenerator的构造函数传入的,这是一个所有通知时间的空实现
        blocksForPushing.put(newBlock)  //添加到阻塞队列中,等待BlockPushingThread读取
        logDebug("Last element in " + blockId + " is " + newBlockBuffer.last)
      }
    } catch {
      case ie: InterruptedException =>
        logInfo("Block updating timer thread was interrupted")
      case e: Exception =>
        reportError("Error in block updating thread", e)
    }
  }
 

 

6. BlockGenerator#keepPushingBlocks

keepPushingBlocks由BlockPushingThread执行

 

 

  /** Keep pushing blocks to the BlockManager. */
  private def keepPushingBlocks() {
    logInfo("Started block pushing thread")
    try {
      while(!stopped) {
        //poll是阻塞队列的非阻塞方法,但是如果队列中没有元素,则等待100ms,poll是取一个元素操作
        Option(blocksForPushing.poll(100, TimeUnit.MILLISECONDS)) match {
          case Some(block) => pushBlock(block)
          case None =>
        }
      }
      // Push out the blocks that are still left
      logInfo("Pushing out the last " + blocksForPushing.size() + " blocks")
      while (!blocksForPushing.isEmpty) {
        logDebug("Getting block ")
        val block = blocksForPushing.take()
        pushBlock(block)
        logInfo("Blocks left to push " + blocksForPushing.size())
      }
      logInfo("Stopped block pushing thread")
    } catch {
      case ie: InterruptedException =>
        logInfo("Block pushing thread was interrupted")
      case e: Exception =>
        reportError("Error in block pushing thread", e)
    }
  }
 

 

7. BlockGenerator#pushBlock

这个方法是针对一个Block进行push,而不是一次从队列中把所有的Block取出来,一次进行push。

 

 

  private def pushBlock(block: Block) {
    listener.onPushBlock(block.id, block.buffer)
    logInfo("Pushed block " + block.id)
  }
 

 

8. BlockGeneratorListener#onPushBlock

pushBlock是通过Observer模式,通知listener,这个liestener是BlockGenerator的构造函数传入的(其实是作为内部类,在构造时创建的实例)

 

 

  /** Divides received data records into data blocks for pushing in BlockManager. */
  private val blockGenerator = new BlockGenerator(new BlockGeneratorListener {
    def onAddData(data: Any, metadata: Any): Unit = { }

    def onGenerateBlock(blockId: StreamBlockId): Unit = { }

    def onError(message: String, throwable: Throwable) {
      reportError(message, throwable)
    }

    def onPushBlock(blockId: StreamBlockId, arrayBuffer: ArrayBuffer[_]) {
      pushArrayBuffer(arrayBuffer, None, Some(blockId))
    }
  }, streamId, env.conf)
 

 

9. BlockGenerator#pushArrayBuffer

 

  /** Store an ArrayBuffer of received data as a data block into Spark's memory. */
  def pushArrayBuffer(
      arrayBuffer: ArrayBuffer[_],
      metadataOption: Option[Any],
      blockIdOption: Option[StreamBlockId]
    ) {
    pushAndReportBlock(ArrayBufferBlock(arrayBuffer), metadataOption, blockIdOption)
  }
 

 

10. BlockGenerator#pushAndReportBlock

 

 

  /** Store block and report it to driver */
  def pushAndReportBlock(
      receivedBlock: ReceivedBlock,
      metadataOption: Option[Any],
      blockIdOption: Option[StreamBlockId]
    ) {
    val blockId = blockIdOption.getOrElse(nextBlockId)
    val numRecords = receivedBlock match {
      case ArrayBufferBlock(arrayBuffer) => arrayBuffer.size
      case _ => -1
    }

    val time = System.currentTimeMillis
    val blockStoreResult = receivedBlockHandler.storeBlock(blockId, receivedBlock)
    logDebug(s"Pushed block $blockId in ${(System.currentTimeMillis - time)} ms")

    val blockInfo = ReceivedBlockInfo(streamId, numRecords, blockStoreResult)
    val future = trackerActor.ask(AddBlock(blockInfo))(askTimeout)
    Await.result(future, askTimeout)
    logDebug(s"Reported block $blockId")
  }
 

 

pushAndReportBlock做了两件事,一是Store Block,而是想Tracker汇报有Block加入

 

10.1 receivedBlockHandler.storeBlock(BlockManagerBasedBlockHandler#storeBlock)

 

 

  def storeBlock(blockId: StreamBlockId, block: ReceivedBlock): ReceivedBlockStoreResult = {
    val putResult: Seq[(BlockId, BlockStatus)] = block match {
      case ArrayBufferBlock(arrayBuffer) =>
        blockManager.putIterator(blockId, arrayBuffer.iterator, storageLevel, tellMaster = true)
      case IteratorBlock(iterator) =>
        blockManager.putIterator(blockId, iterator, storageLevel, tellMaster = true)
      case ByteBufferBlock(byteBuffer) =>
        blockManager.putBytes(blockId, byteBuffer, storageLevel, tellMaster = true)
      case o =>
        throw new SparkException(
          s"Could not store $blockId to block manager, unexpected block type ${o.getClass.getName}")
    }
    if (!putResult.map { _._1 }.contains(blockId)) {
      throw new SparkException(
        s"Could not store $blockId to block manager with storage level $storageLevel")
    }
    BlockManagerBasedStoreResult(blockId)
  }
 

 

其中,blockManager是BlockManager类型的变量,定义于org.apache.spark.storage包中,实现向BlockManager写入数据,具体调用putIterator,putBytes,这是Spark存储子系统的内容,此处不赘述,重要的是,在此处写入进了BlockManager

 

10.2 ReceiverTracker#AddBlock

通过下面两个语句,将写入到BlockManager的信息汇报给TrackActor,这是一个进程间的同步调用(ask语法)

    val blockInfo = ReceivedBlockInfo(streamId, numRecords, blockStoreResult)
    val future = trackerActor.ask(AddBlock(blockInfo))(askTimeout)
    Await.result(future, askTimeout)

 

trackerActor对应的实体是ReceiverTracker,AddBlock消息将触发ReceiverTracker.addBlock,进而调用ReceivedBlockTracker.addBlock

 

 

  /** Add new blocks for the given stream */
  private def addBlock(receivedBlockInfo: ReceivedBlockInfo): Boolean = {
    receivedBlockTracker.addBlock(receivedBlockInfo)
  }
 

 

11. ReceivedBlockTracker.addBlock

 

 

  /** Add received block. This event will get written to the write ahead log (if enabled). */
  def addBlock(receivedBlockInfo: ReceivedBlockInfo): Boolean = synchronized {
    try {
      writeToLog(BlockAdditionEvent(receivedBlockInfo))//写WAL
      getReceivedBlockQueue(receivedBlockInfo.streamId) += receivedBlockInfo //getReceivedBlockQueue从Map<streamId,streamReceivedBlockQueue>中获取相应的streamReceivedBlockQueue
      logDebug(s"Stream ${receivedBlockInfo.streamId} received " +
        s"block ${receivedBlockInfo.blockStoreResult.blockId}")
      true
    } catch {
      case e: Exception =>
        logError(s"Error adding block $receivedBlockInfo", e)
        false
    }
  }
 

 

 

 

 

分享到:
评论

相关推荐

    spark Streaming和structed streaming分析

    Apache Spark Streaming是Apache Spark用于处理实时流数据的一个组件。它允许用户使用Spark的高度抽象概念处理实时数据流,并且可以轻松地与存储解决方案、批处理数据和机器学习算法集成。Spark Streaming提供了一种...

    sparkStreaming消费数据不丢失

    sparkStreaming消费数据不丢失,sparkStreaming消费数据不丢失

    Spark源码分析.pdf

    《Spark源码分析》这本书是针对那些希望深入了解大数据处理框架Spark以及与其紧密相关的Hadoop技术的专业人士所编写的。Spark作为一个快速、通用且可扩展的数据处理引擎,已经在大数据领域占据了重要地位,而深入...

    SparkStreaming流式日志过滤与分析

    (1)利用SparkStreaming从文件目录读入日志信息,日志内容包含: ”日志级别、函数名、日志内容“ 三个字段,字段之间以空格拆分。请看数据源的文件。 (2)对读入都日志信息流进行指定筛选出日志级别为error或warn...

    kafka+spark streaming开发文档

    在配置Spark Streaming时,需要将Spark版本设置为1.3.0,并且需要配置Spark Streaming的参数,包括batch interval、window duration等。 三、Kafka和Spark Streaming集成 在将Kafka和Spark Streaming集成时,需要...

    Spark零基础思维导图(内含spark-core ,spark-streaming,spark-sql),总结的很全面.zip

    Spark零基础思维导图(内含spark-core ,spark-streaming,spark-sql),总结的很全面。 Spark零基础思维导图(内含spark-core ,spark-streaming,spark-sql)。 Spark零基础思维导图(内含spark-core ,spark-streaming,...

    spark streaming

    Spark Streaming 是Apache Spark中的一个重要组件,专门设计用来处理实时数据流的计算框架。作为Spark核心API的一个扩展,它延续了Spark的易用性和高效性,能够将实时数据流处理与批量数据处理无缝集成在一起。利用...

    深入理解Spark 核心思想与源码分析

    8. **Spark Streaming**:Spark Streaming构建在微批处理之上,通过将流数据划分为小批次处理,实现了低延迟的实时流处理。 9. **MLlib与Spark ML**:Spark提供了机器学习库MLlib,以及基于DataFrame的ML,支持各种...

    Scala代码积累之spark streaming kafka 数据存入到hive源码实例

    Scala代码积累之spark streaming kafka 数据存入到hive源码实例,Scala代码积累之spark streaming kafka 数据存入到hive源码实例。

    SparkStreaming预研报告

    整体而言,该预研报告为技术人员提供了关于Spark Streaming的全面了解,从基础概念到深入案例分析,再到性能调优和与其他技术的对比,是大数据流处理领域的重要参考文献。对于希望利用Spark Streaming进行实时数据...

    spark之sparkStreaming 理解

    - **处理单元**:Storm处理的是单个事件,而Spark Streaming处理的是某一时间窗口内的事件流。因此,Storm能够实现几乎即时的处理延迟(亚秒级),而Spark Streaming则通常有几秒钟的延迟。 - **语言支持**:Storm...

    spark core、spark sql以及spark streaming 的Scala、java项目混合框架搭建以及大数据案例

    在大数据处理领域,Spark作为一款高效、通用的计算框架,被广泛应用在数据分析、机器学习等多个场景。本项目涉及的核心知识点包括Spark Core、Spark SQL和Spark Streaming,同时结合了Scala和Java编程语言,以及...

    spark高级分析数据源码

    《Spark高级分析数据源码》是一本专注于Spark高级分析技术的书籍,其核心内容通过源码解析来深入理解Spark在大数据处理中的工作机制。这个压缩包包含的"aas-master"文件夹,很可能是书籍实例代码的仓库,对于学习...

    spark源码分析系列

    在本知识点中,我们将探讨Spark Streaming中的Direct Approach模式,并结合源码分析,理解如何处理和预防在使用Spark Streaming消费Kafka数据时出现的一些常见问题。 **Spark Streaming Direct Approach核心机制** ...

    基于Spark Streaming的实时数据处理系统设计与实现.pdf

    本文提出了一种基于Spark Streaming技术的实时数据处理系统,旨在解决实时数据处理问题,提高数据处理的实时性。 二、Spark Streaming技术与实时数据处理系统设计 Spark Streaming是Apache Spark用于实时数据流处理...

    Spark源码剖析

    Spark 源码剖析涉及的内容广泛,包括核心组件、数据处理模型、内存管理、调度系统等多个方面。在这个主题下,我们将深入探讨以下几个关键知识点: 1. **Spark 架构**:Spark 的核心架构基于 Resilient Distributed ...

    Flume对接Spark Streaming的相关jar包

    本压缩包中的 jar 包是为了解决 Flume 与 Spark Streaming 的集成问题,确保数据能够从 Flume 无缝流转到 Spark Streaming 进行实时分析。 Flume 是 Apache Hadoop 生态系统中的一个分布式、可靠且可用的服务,它...

    SparkStreaming入门案例

    Spark Streaming 是一种构建在 Spark 上的实时计算框架,用来处理大规模流式数据。它将从数据源(如 Kafka、Flume、Twitter、ZeroMQ、HDFS 和 TCP 套接字)获得的连续数据流,离散化成一批一批地数据进行处理。每一...

    Spark 学习之路,包含 Spark Core,Spark SQL,Spark Streaming,Spark mllib 学

    Spark 学习之路,包含 Spark Core,Spark SQL,Spark Streaming,Spark mllib 学习笔记 * [spark core学习笔记及代码 * [spark sql学习笔记及代码 * [spark streaming学习笔记及代码 Spark 消息通信 ### Spark ...

    spark Streaming和storm的对比

    DStream由一系列RDD(Resilient Distributed Dataset,弹性分布式数据集)组成,每个RDD包含了一个时间间隔内的数据。数据在DStream中的处理方式与Spark中的RDD处理方式相似,可以应用map、reduce、join等操作。 ...

Global site tag (gtag.js) - Google Analytics