转载自【Matrix67】,原博客地址http://www.matrix67.com/blog/archives/115
感谢原作者。
如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段。
我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法。KMP算法是拿来处理字符串匹配的。换句话说,给你两个字符串,你需要回答,B串是否是A串的子串(A串是否包含B串)。比如,字符串A="I'm matrix67",字符串B="matrix",我们就说B是A的子串。你可以委婉地问你的MM:“假如你要向你喜欢的人表白的话,我的名字是你的告白语中的子串吗?”
解决这类问题,通常我们的方法是枚举从A串的什么位置起开始与B匹配,然后验证是否匹配。假如A串长度为n,B串长度为m,那么这种方法的复杂度是O (mn)的。虽然很多时候复杂度达不到mn(验证时只看头一两个字母就发现不匹配了),但我们有许多“最坏情况”,比如,A= "aaaaaaaaaaaaaaaaaaaaaaaaaab",B="aaaaaaaab"。我们将介绍的是一种最坏情况下O(n)的算法(这里假设 m<=n),即传说中的KMP算法。
之所以叫做KMP,是因为这个算法是由Knuth、Morris、Pratt三个提出来的,取了这三个人的名字的头一个字母。这时,或许你突然明白了AVL 树为什么叫AVL,或者Bellman-Ford为什么中间是一杠不是一个点。有时一个东西有七八个人研究过,那怎么命名呢?通常这个东西干脆就不用人名字命名了,免得发生争议,比如“3x+1问题”。扯远了。
个人认为KMP是最没有必要讲的东西,因为这个东西网上能找到很多资料。但网上的讲法基本上都涉及到“移动(shift)”、“Next函数”等概念,这非常容易产生误解(至少一年半前我看这些资料学习KMP时就没搞清楚)。在这里,我换一种方法来解释KMP算法。
假如,A="abababaababacb",B="ababacb",我们来看看KMP是怎么工作的。我们用两个指针i和j分别表示,A[i-j+ 1..i]与B[1..j]完全相等。也就是说,i是不断增加的,随着i的增加j相应地变化,且j满足以A[i]结尾的长度为j的字符串正好匹配B串的前 j个字符(j当然越大越好),现在需要检验A[i+1]和B[j+1]的关系。当A[i+1]=B[j+1]时,i和j各加一;什么时候j=m了,我们就说B是A的子串(B串已经整完了),并且可以根据这时的i值算出匹配的位置。当A[i+1]<>B[j+1],KMP的策略是调整j的位置(减小j值)使得A[i-j+1..i]与B[1..j]保持匹配且新的B[j+1]恰好与A[i+1]匹配(从而使得i和j能继续增加)。我们看一看当 i=j=5时的情况。
i = 1 2 3 4 5 6 7 8 9 ……
A = a b a b a b a a b a b …
B = a b a b a c b
j = 1 2 3 4 5 6 7
此时,A[6]<>B[6]。这表明,此时j不能等于5了,我们要把j改成比它小的值j'。j'可能是多少呢?仔细想一下,我们发现,j'必须要使得B[1..j]中的头j'个字母和末j'个字母完全相等(这样j变成了j'后才能继续保持i和j的性质)。这个j'当然要越大越好。在这里,B [1..5]="ababa",头3个字母和末3个字母都是"aba"。而当新的j为3时,A[6]恰好和B[4]相等。于是,i变成了6,而j则变成了 4:
i = 1 2 3 4 5 6 7 8 9 ……
A = a b a b a b a a b a b …
B = a b a b a c b
j = 1 2 3 4 5 6 7
从上面的这个例子,我们可以看到,新的j可以取多少与i无关,只与B串有关。我们完全可以预处理出这样一个数组P[j],表示当匹配到B数组的第j个字母而第j+1个字母不能匹配了时,新的j最大是多少。P[j]应该是所有满足B[1..P[j]]=B[j-P[j]+1..j]的最大值。
再后来,A[7]=B[5],i和j又各增加1。这时,又出现了A[i+1]<>B[j+1]的情况:
i = 1 2 3 4 5 6 7 8 9 ……
A = a b a b a b a a b a b …
B = a b a b a c b
j = 1 2 3 4 5 6 7
由于P[5]=3,因此新的j=3:
i = 1 2 3 4 5 6 7 8 9 ……
A = a b a b a b a a b a b …
B = a b a b a c b
j = 1 2 3 4 5 6 7
这时,新的j=3仍然不能满足A[i+1]=B[j+1],此时我们再次减小j值,将j再次更新为P[3]:
i = 1 2 3 4 5 6 7 8 9 ……
A = a b a b a b a a b a b …
B = a b a b a c b
j = 1 2 3 4 5 6 7
现在,i还是7,j已经变成1了。而此时A[8]居然仍然不等于B[j+1]。这样,j必须减小到P[1],即0:
i = 1 2 3 4 5 6 7 8 9 ……
A = a b a b a b a a b a b …
B = a b a b a c b
j = 0 1 2 3 4 5 6 7
终于,A[8]=B[1],i变为8,j为1。事实上,有可能j到了0仍然不能满足A[i+1]=B[j+1](比如A[8]="d"时)。因此,准确的说法是,当j=0了时,我们增加i值但忽略j直到出现A[i]=B[1]为止。
这个过程的代码很短(真的很短),我们在这里给出:
j:=0;
for i:=1 to n do
begin
while (j>0) and (B[j+1]<>A[i]) do j:=P[j];
if B[j+1]=A[i] then j:=j+1;
if j=m then
begin
writeln('Pattern occurs with shift ',i-m);
j:=P[j];
end;
end;
最后的j:=P[j]是为了让程序继续做下去,因为我们有可能找到多处匹配。
这个程序或许比想像中的要简单,因为对于i值的不断增加,代码用的是for循环。因此,这个代码可以这样形象地理解:扫描字符串A,并更新可以匹配到B的什么位置。
现在,我们还遗留了两个重要的问题:一,为什么这个程序是线性的;二,如何快速预处理P数组。
为什么这个程序是O(n)的?其实,主要的争议在于,while循环使得执行次数出现了不确定因素。我们将用到时间复杂度的摊还分析中的主要策略,简单地说就是通过观察某一个变量或函数值的变化来对零散的、杂乱的、不规则的执行次数进行累计。KMP的时间复杂度分析可谓摊还分析的典型。我们从上述程序的j 值入手。每一次执行while循环都会使j减小(但不能减成负的),而另外的改变j值的地方只有第五行。每次执行了这一行,j都只能加1;因此,整个过程中j最多加了n个1。于是,j最多只有n次减小的机会(j值减小的次数当然不能超过n,因为j永远是非负整数)。这告诉我们,while循环总共最多执行了n次。按照摊还分析的说法,平摊到每次for循环中后,一次for循环的复杂度为O(1)。整个过程显然是O(n)的。这样的分析对于后面P数组预处理的过程同样有效,同样可以得到预处理过程的复杂度为O(m)。
预处理不需要按照P的定义写成O(m^2)甚至O(m^3)的。我们可以通过P[1],P[2],...,P[j-1]的值来获得P[j]的值。对于刚才的B="ababacb",假如我们已经求出了P[1],P[2],P[3]和P[4],看看我们应该怎么求出P[5]和P[6]。P[4]=2,那么P [5]显然等于P[4]+1,因为由P[4]可以知道,B[1,2]已经和B[3,4]相等了,现在又有B[3]=B[5],所以P[5]可以由P[4] 后面加一个字符得到。P[6]也等于P[5]+1吗?显然不是,因为B[ P[5]+1 ]<>B[6]。那么,我们要考虑“退一步”了。我们考虑P[6]是否有可能由P[5]的情况所包含的子串得到,即是否P[6]=P[ P[5] ]+1。这里想不通的话可以仔细看一下:
1 2 3 4 5 6 7
B = a b a b a c b
P = 0 0 1 2 3 ?
P[5]=3是因为B[1..3]和B[3..5]都是"aba";而P[3]=1则告诉我们,B[1]、B[3]和B[5]都是"a"。既然P[6]不能由P[5]得到,或许可以由P[3]得到(如果B[2]恰好和B[6]相等的话,P[6]就等于P[3]+1了)。显然,P[6]也不能通过P[3]得到,因为B[2]<>B[6]。事实上,这样一直推到P[1]也不行,最后,我们得到,P[6]=0。
怎么这个预处理过程跟前面的KMP主程序这么像呢?其实,KMP的预处理本身就是一个B串“自我匹配”的过程。它的代码和上面的代码神似:
P[1]:=0;
j:=0;
for i:=2 to m do
begin
while (j>0) and (B[j+1]<>B[i]) do j:=P[j];
if B[j+1]=B[i] then j:=j+1;
P[i]:=j;
end;
最后补充一点:由于KMP算法只预处理B串,因此这种算法很适合这样的问题:给定一个B串和一群不同的A串,问B是哪些A串的子串。
串匹配是一个很有研究价值的问题。事实上,我们还有后缀树,自动机等很多方法,这些算法都巧妙地运用了预处理,从而可以在线性的时间里解决字符串的匹配。我们以后来说。
昨天发现一个特别晕的事,知道怎么去掉BitComet的广告吗?把界面语言设成英文就行了。
还有,金山词霸和Dr.eye都可以去自杀了,Babylon素王道。
Matrix67原创
转贴请注明出处
分享到:
相关推荐
KMP算法详解 KMP算法详解 KMP算法详解
KMP 算法详解 KMP 算法是字符串模式匹配的一种高效算法,解决了字符串中模式匹配的问题。该算法可以在 O(m+n) 的时间复杂度内完成字符串模式匹配。 简单匹配算法 简单匹配算法的思想是直截了当的,将主串 S 中...
### KMP算法详解 #### 一、KMP算法概述 KMP算法,全称为Knuth-Morris-Pratt算法,是一种高效的字符串匹配算法,由Donald Knuth、James H. Morris和Vaughan Pratt三位计算机科学家共同提出。该算法主要用于解决在主...
严蔚敏-数据结构-kmp算法详解.ppt该文档详细且完整,值得借鉴下载使用,欢迎下载使用,有问题可以第一时间联系作者~
算法 KMP算法 KMP算法 KMP算法 KMP算法 KMP算法 KMP算法 KMP算法 KMP算法 KMP算法 KMP算法 KMP算法 KMP
"kmp算法详解" KMP 字符串模式匹配算法是高效的字符串匹配算法,时间复杂度为 O(m+n),其中 m 和 n 分别是主串和模式串的长度。KMP 算法的核心思想是利用已经得到的部分匹配信息来进行后面的匹配过程。 KMP 算法的...
KMP算法详解.mhtml
KMP、Mancher和扩展KMP算法详解,但是其中的参考代码有一点小错误,请自行参考网络
### 模式匹配的KMP算法详解 #### 一、KMP算法背景及传统模式匹配算法 KMP算法,即Knuth-Morris-Pratt算法,是由Donald E. Knuth、James H. Morris和Vaughan R. Pratt三位计算机科学家在1977年共同提出的一种高效的...
严蔚敏数据结构kmp算法详解PPT学习教案.pptx 本资源摘要信息将对严蔚敏数据结构kmp算法的学习教案进行详细的讲解和分析。KMP算法是字符串匹配算法中的一种重要算法,它可以高效地进行字符串匹配。 首先,我们需要...
### 字符串模式匹配KMP算法详解 #### 一、引言 在计算机科学领域,字符串模式匹配是一项基本且重要的任务。它涉及到在一个较大的文本字符串(通常称为“主串”或“目标串”)中寻找一个较小的字符串(称为“模式串...
### KMP算法详解:原理与应用 #### 引言 KMP算法,全称为Knuth-Morris-Pratt算法,是一种高效的字符串匹配算法,由Donald E. Knuth、James H. Morris以及Vaughan Pratt三位计算机科学家共同提出。相较于传统的模式...
本文介绍了KMP算法的原理和基本实现方法,附带算法模板的代码和详解。如想了解更多内容,欢迎关注微信公众号:信息学竞赛从入门到巅峰。
KMP算法的核心在于构建一个称为“部分匹配表”或“next数组”,用于存储模式串中每个位置的前缀和后缀的最大公共长度。 在构建next数组的过程中,我们需要遵循以下两个条件: 1. 当比较到某个位置时,如果模式串的...
【KMP算法详解】 KMP(Knuth-Morris-Pratt)算法是一种高效地进行字符串模式匹配的算法,由D.E.Knuth、J.H.Morris和V.R.Pratt三位学者独立提出。它解决了在主串(S)中查找模式串(T)出现的位置问题,避免了在匹配...
"KMP算法详解" 一、KMP字符串模式匹配算法 KMP字符串模式匹配算法是一种高效的字符串模式匹配算法,能够在一个字符串中快速地定位另一个字符串。该算法的时间复杂度为O(m+n),远远优于简单匹配算法的时间复杂度O(m...
《KMP算法详解》 KMP(Knuth-Morris-Pratt)算法是一种在字符串中查找子串出现位置的高效算法,由Donald Knuth、James H. Morris和 Vaughan Pratt共同提出。该算法避免了在匹配过程中对已匹配部分的重新比较,显著...
相比于简单的暴力匹配算法,KMP算法显著提高了性能,避免了不必要的字符回溯。它的核心在于构造一个模式函数next,也称为部分匹配表,用于存储模式串中每个位置的最长前缀和后缀的公共长度。 简单匹配算法,也称为...