Hive User Defined Functions (UDFs) fall into the following categories: (*
)
-
Built-in Operators
-
Built-in Functions
-
Built-in Aggregate Functions (UDAF)
-
Built-in Table-Generating Functions (UDTF)
In the Karmasphere Analyst Query Window, use the commands below to show the latest documentation:
SHOW FUNCTIONS;
DESCRIBE FUNCTION <function_name>;
1. Built-in Operators
Relational Operators
The
following operators compare the passed operands and generate a TRUE or
FALSE value depending on whether the comparison between the operands
holds.
Operator
|
Operand types
|
Description
|
A = B
|
All primitive types
|
TRUE if expression A is equal to expression B otherwise FALSE
|
A == B
|
None!
|
Fails because of invalid syntax. SQL uses =, not ==
|
A <> B
|
All primitive types
|
NULL if A or B is NULL, TRUE if expression A is NOT equal to expression B otherwise FALSE
|
A < B
|
All primitive types
|
NULL if A or B is NULL, TRUE if expression A is less than expression B otherwise FALSE
|
A <= B
|
All primitive types
|
NULL if A or B is NULL, TRUE if expression A is less than or equal to expression B otherwise FALSE
|
A > B
|
All primitive types
|
NULL if A or B is NULL, TRUE if expression A is greater than expression B otherwise FALSE
|
A >= B
|
All primitive types
|
NULL if A or B is NULL, TRUE if expression A is greater than or equal to expression B otherwise FALSE
|
A IS NULL
|
all types
|
TRUE if expression A evaluates to NULL otherwise FALSE
|
A IS NOT NULL
|
All types
|
TRUE if expression A evaluates to NULL otherwise FALSE
|
A LIKE B
|
strings
|
NULL
if A or B is NULL, TRUE if string A matches the SQL simple regular
expression B, otherwise FALSE. The comparison is done character by
character. The _ character in B matches any character in A(similar to .
in posix regular expressions) while the % character in B matches an
arbitrary number of characters in A(similar to .* in posix regular
expressions) e.g. 'foobar' like 'foo' evaluates to FALSE where as
'foobar' like 'foo_ _ _' evaluates to TRUE and so does 'foobar' like
'foo%'
|
A RLIKE B
|
strings
|
NULL
if A or B is NULL, TRUE if string A matches the Java regular expression
B(See Java regular expressions syntax), otherwise FALSE e.g. 'foobar'
rlike 'foo' evaluates to FALSE where as 'foobar' rlike '^f.*r$'
evaluates to TRUE
|
A REGEXP B
|
strings
|
Same as RLIKE
|
Arithmetic Operators
The
following operators support various common arithmetic operations on the
operands. All return number types; if any of the operands are NULL,
then the result is also NULL.
Operator
|
Operand types
|
Description
|
A + B
|
All number types
|
Gives
the result of adding A and B. The type of the result is the same as the
common parent(in the type hierarchy) of the types of the operands. e.g.
since every integer is a float, therefore float is a containing type of
integer so the + operator on a float and an int will result in a float.
|
A - B
|
All number types
|
Gives
the result of subtracting B from A. The type of the result is the same
as the common parent(in the type hierarchy) of the types of the
operands.
|
A * B
|
All number types
|
Gives
the result of multiplying A and B. The type of the result is the same
as the common parent(in the type hierarchy) of the types of the
operands. Note that if the multiplication causing overflow, you will
have to cast one of the operators to a type higher in the type
hierarchy.
|
A / B
|
All number types
|
Gives the result of dividing B from A. The result is a double type.
|
A % B
|
All number types
|
Gives
the reminder resulting from dividing A by B. The type of the result is
the same as the common parent(in the type hierarchy) of the types of the
operands.
|
A & B
|
All number types
|
Gives
the result of bitwise AND of A and B. The type of the result is the
same as the common parent(in the type hierarchy) of the types of the
operands.
|
A | B
|
All number types
|
Gives
the result of bitwise OR of A and B. The type of the result is the same
as the common parent(in the type hierarchy) of the types of the
operands.
|
A ^ B
|
All number types
|
Gives
the result of bitwise XOR of A and B. The type of the result is the
same as the common parent(in the type hierarchy) of the types of the
operands.
|
~A
|
All number types
|
Gives the result of bitwise NOT of A. The type of the result is the same as the type of A.
|
Logical Operators
The
following operators provide support for creating logical expressions.
All of them return boolean TRUE, FALSE, or NULL depending upon the
boolean values of the operands. NULL behaves as an "unknown" flag, so if
the result depends on the state of an unknown, the result itself is
unknown.
Operator
|
Operand types
|
Description
|
A AND B
|
boolean
|
TRUE if both A and B are TRUE, otherwise FALSE. NULL if A or B is NULL
|
A && B
|
boolean
|
Same as A AND B
|
A OR B
|
boolean
|
TRUE if either A or B or both are TRUE; FALSE OR NULL is NULL; otherwise FALSE
|
A | | B
|
boolean
|
Same as A OR B
|
NOT A
|
boolean
|
TRUE if A is FALSE or NULL if A is NULL. Otherwise FALSE.
|
! A
|
boolean
|
Same as NOT A
|
Complex Type Constructors
The following functions construct instances of complex types.
Constructor Function
|
Operands
|
Description
|
map
|
(key1, value1, key2, value2, ...)
|
Creates a map with the given key/value pairs
|
struct
|
(val1, val2, val3, ...)
|
Creates a struct with the given field values. Struct field names will be col1, col2, ...
|
array
|
(val1, val2, ...)
|
Creates an array with the given elements
|
Operators on Complex Types
The following operators provide mechanisms to access elements in Complex Types
Operator
|
Operand types
|
Description
|
A[n]
|
A is an Array and n is an int
|
Returns
the nth element in the array A. The first element has index 0 e.g. if A
is an array comprising of ['foo', 'bar'] then A[0] returns 'foo' and
A[1] returns 'bar'
|
M[key]
|
M is a Map<K, V> and key has type K
|
Returns
the value corresponding to the key in the map e.g. if M is a map
comprising of {'f' -> 'foo', 'b' -> 'bar', 'all' -> 'foobar'}
then M['all'] returns 'foobar'
|
S.x
|
S is a struct
|
Returns
the x field of S. e.g for struct foobar {int foo, int bar} foobar.foo
returns the integer stored in the foo field of the struct.
|
2. Built-in Functions
Mathematical Functions
The following built-in mathematical functions are supported in hive; most return NULL when the argument(s) are NULL:
Return Type
|
Name(Signature)
|
Description
|
BIGINT
|
round(double a)
|
Returns the rounded BIGINT value of the double
|
BIGINT
|
floor(double a)
|
Returns the maximum BIGINT value that is equal or less than the double
|
BIGINT
|
ceil(double a), ceiling(double a)
|
Returns the minimum BIGINT value that is equal or greater than the double
|
double
|
rand(), rand(int seed)
|
Returns
a random number (that changes from row to row) that is distributed
uniformly from 0 to 1. Specifiying the seed will make sure the generated
random number sequence is deterministic.
|
double
|
exp(double a)
|
Returns e^a where e is the base of the natural logarithm
|
double
|
ln(double a)
|
Returns the natural logarithm of the argument
|
double
|
log10(double a)
|
Returns the base-10 logarithm of the argument
|
double
|
log2(double a)
|
Returns the base-2 logarithm of the argument
|
double
|
log(double base, double a)
|
Return the base "base" logarithm of the argument
|
double
|
pow(double a, double p) power(double a, double p)
|
Return a^p
|
double
|
sqrt(double a)
|
Returns the square root of a
|
string
|
bin(BIGINT a)
|
Returns the number in binary format (see [http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_bin
])
|
string
|
hex(BIGINT a) hex(string a)
|
If
the argument is an int, hex returns the number as a string in hex
format. Otherwise if the number is a string, it converts each character
into its hex representation and returns the resulting string. (see [http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_hex
])
|
string
|
unhex(string a)
|
Inverse
of hex. Interprets each pair of characters as a hexidecimal number and
converts to the character represented by the number.
|
string
|
conv(BIGINT num, int from_base, int to_base)
|
Converts a number from a given base to another (see [http://dev.mysql.com/doc/refman/5.0/en/mathematical-functions.html#function_conv
])
|
double
|
abs(double a)
|
Returns the absolute value
|
int double
|
pmod(int a, int b) pmod(double a, double b)
|
Returns the positive value of a mod b
|
double
|
sin(double a)
|
Returns the sine of a (a is in radians)
|
double
|
asin(double a)
|
Returns the arc sin of x if -1<=a<=1 or null otherwise
|
double
|
cos(double a)
|
Returns the cosine of a (a is in radians)
|
double
|
acos(double a)
|
Returns the arc cosine of x if -1<=a<=1 or null otherwise
|
int double
|
positive(int a) positive(double a)
|
Returns a
|
int double
|
negative(int a) negative(double a)
|
Returns -a
|
Collection Functions
The following built-in collection functions are supported in hive:
Return Type
|
Name(Signature)
|
Description
|
int
|
size(Map<K.V>)
|
Returns the number of elements in the map type
|
int
|
size(Array<T>)
|
Returns the number of elements in the array type
|
Type Conversion Functions
The following type conversion functions are supported in hive:
Return Type
|
Name(Signature)
|
Description
|
Expected "=" to follow "type"
|
cast(expr as <type>)
|
Converts
the results of the expression expr to <type> e.g. cast('1' as
BIGINT) will convert the string '1' to it integral representation. A
null is returned if the conversion does not succeed.
|
Date Functions
The following built-in date functions are supported in hive:
string
|
from_unixtime(int unixtime)
|
Converts
the number of seconds from unix epoch (1970-01-01 00:00:00 UTC) to a
string representing the timestamp of that moment in the current system
time zone in the format of "1970-01-01 00:00:00"
|
bigint
|
unix_timestamp()
|
Gets current time stamp using the default time zone.
|
bigint
|
unix_timestamp(string date)
|
Converts
time string in format yyyy-MM-dd HH:mm:ss to Unix time stamp, return 0
if fail: unix_timestamp('2009-03-20 11:30:01') = 1237573801
|
bigint
|
unix_timestamp(string date, string pattern)
|
Convert time string with given pattern (see [http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
]) to Unix time stamp, return 0 if fail: unix_timestamp('2009-03-20', 'yyyy-MM-dd') = 1237532400
|
string
|
to_date(string timestamp)
|
Returns the date part of a timestamp string: to_date("1970-01-01 00:00:00") = "1970-01-01"
|
int
|
year(string date)
|
Returns the year part of a date or a timestamp string: year("1970-01-01 00:00:00") = 1970, year("1970-01-01") = 1970
|
int
|
month(string date)
|
Returns the month part of a date or a timestamp string: month("1970-11-01 00:00:00") = 11, month("1970-11-01") = 11
|
int
|
day(string date) dayofmonth(date)
|
Return the day part of a date or a timestamp string: day("1970-11-01 00:00:00") = 1, day("1970-11-01") = 1
|
int
|
hour(string date)
|
Returns the hour of the timestamp: hour('2009-07-30 12:58:59') = 12, hour('12:58:59') = 12
|
int
|
minute(string date)
|
Returns the minute of the timestamp
|
int
|
second(string date)
|
Returns the second of the timestamp
|
int
|
weekofyear(string date)
|
Return the week number of a timestamp string: weekofyear("1970-11-01 00:00:00") = 44, weekofyear("1970-11-01") = 44
|
int
|
datediff(string enddate, string startdate)
|
Return the number of days from startdate to enddate: datediff('2009-03-01', '2009-02-27') = 2
|
int
|
date_add(string startdate, int days)
|
Add a number of days to startdate: date_add('2008-12-31', 1) = '2009-01-01'
|
int
|
date_sub(string startdate, int days)
|
Subtract a number of days to startdate: date_sub('2008-12-31', 1) = '2008-12-30'
|
Conditional Functions
T
|
if(boolean testCondition, T valueTrue, T valueFalseOrNull)
|
Return valueTrue when testCondition is true, returns valueFalseOrNull otherwise
|
T
|
COALESCE(T v1, T v2, ...)
|
Return the first v that is not NULL, or NULL if all v's are NULL
|
T
|
CASE a WHEN b THEN c [WHEN d THEN e]* [ELSE f] END
|
When a = b, returns c; when a = d, return e; else return f
|
T
|
CASE WHEN a THEN b [WHEN c THEN d]* [ELSE e] END
|
When a = true, returns b; when c = true, return d; else return e
|
String Functions
The following are built-in String functions are supported in hive:
Return Type
|
Name(Signature)
|
Description
|
int
|
length(string A)
|
Returns the length of the string
|
string
|
reverse(string A)
|
Returns the reversed string
|
string
|
concat(string A, string B...)
|
Returns
the string resulting from concatenating the strings passed in as
parameters in order. e.g. concat('foo', 'bar') results in 'foobar'. Note
that this function can take any number of input strings.
|
string
|
concat_ws(string SEP, string A, string B...)
|
Like concat() above, but with custom separator SEP.
|
string
|
substr(string A, int start) substring(string A, int start)
|
Returns the substring of A starting from start position till the end of string A e.g. concat('foobar', 4) results in 'bar' (see [http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_substr
])
|
string
|
substr(string A, int start, int len) substring(string A, int start, int len)
|
Returns the substring of A starting from start position with length len e.g. concat('foobar', 4, 1) results in 'b' (see [http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_substr
])
|
string
|
upper(string A) ucase(string A)
|
Returns the string resulting from converting all characters of A to upper case e.g. upper('fOoBaR') results in 'FOOBAR'
|
string
|
lower(string A) lcase(string A)
|
Returns the string resulting from converting all characters of B to lower case e.g. lower('fOoBaR') results in 'foobar'
|
string
|
trim(string A)
|
Returns the string resulting from trimming spaces from both ends of A e.g. trim(' foobar ') results in 'foobar'
|
string
|
ltrim(string A)
|
Returns
the string resulting from trimming spaces from the beginning(left hand
side) of A e.g. ltrim(' foobar ') results in 'foobar '
|
string
|
rtrim(string A)
|
Returns the string resulting from trimming spaces from the end(right hand side) of A e.g. rtrim(' foobar ') results in ' foobar'
|
string
|
regexp_replace(string A, string B, string C)
|
Returns
the string resulting from replacing all substrings in B that match the
Java regular expression syntax(See Java regular expressions syntax) with
C e.g. regexp_replace("foobar", "oo|ar", "") returns 'fb.' Note that
some care is necessary in using predefined character classes: using '\s'
as the second argument will match the letter s; '\\s' is necessary to
match whitespace, etc.
|
string
|
regexp_extract(string subject, string pattern, int intex)
|
Returns
the string extracted using the pattern. e.g.
regexp_extract('foothebar', 'foo(.*?)(bar)', 2) returns 'bar.' Note that
some care is necessary in using predefined character classes: using
'\s' as the second argument will match the letter s; '\\s' is necessary
to match whitespace, etc.
|
string
|
parse_url(string urlString, string partToExtract [, string keyToExtract])
|
Returns
the specified part from the URL. Valid values for partToExtract include
HOST, PATH, QUERY, REF, PROTOCOL, AUTHORITY, FILE, and USERINFO. e.g.
parse_url('http://facebook.com/path1/p.php?k1=v1&k2=v2#Ref1
',
'HOST') returns 'facebook.com'. Also a value of a particular key in
QUERY can be extracted by providing the key as the third argument, e.g.
parse_url('http://facebook.com/path1/p.php?k1=v1&k2=v2#Ref1
', 'QUERY', 'k1') returns 'v1'.
|
string
|
get_json_object(string json_string, string path)
|
Extract
json object from a json string based on json path specified, and return
json string of the extracted json object. It will return null if the
input json string is invalid
|
string
|
space(int n)
|
Return a string of n spaces
|
string
|
repeat(string str, int n)
|
Repeat str n times
|
string
|
ascii(string str)
|
Returns the numeric value of the first character of str
|
string
|
lpad(string str, int len, string pad)
|
Returns str, left-padded with pad to a length of len
|
string
|
rpad(string str, int len, string pad)
|
Returns str, right-padded with pad to a length of len
|
array
|
split(string str, string pat)
|
Split str around pat (pat is a regular expression)
|
int
|
find_in_set(string str, string strList)
|
Returns
the first occurance of str in strList where strList is a
comma-delimited string. Returns null if either argument is null. Returns
0 if the first argument contains any commas. e.g. find_in_set('ab',
'abc,b,ab,c,def') returns 3
|
array<array<string>>
|
sentences(string str, string lang, string locale)
|
Tokenizes
a string of natural language text into words and sentences, where each
sentence is broken at the appropriate sentence boundary and returned as
an array of words. The 'lang' and 'locale' are optional arguments. e.g.
sentences('Hello there! How are you?') returns ( ("Hello", "there"),
("How", "are", "you") )
|
array<struct<string,double>>
|
ngrams(array<array<string>>, int N, int K, int pf)
|
Returns the top-k N-grams from a set of tokenized sentences, such as those returned by the sentences() UDAF. See Hive/StatisticsAndDataMining
for more information.
|
array<struct<string,double>>
|
context_ngrams(array<array<string>>, array<string>, int K, int pf)
|
Returns the top-k contextual N-grams from a set of tokenized sentences, given a string of "context". See Hive/StatisticsAndDataMining
for more information.
|
Misc. Functions
xpath
xpath, xpath_short, xpath_int, xpath_long, xpath_float, xpath_double, xpath_number, xpath_string
-
Functions for parsing XML data using XPath expressions.
-
Since version: 0.6.0
Overview
The xpath
family of UDFs are wrappers around the Java XPath library
javax.xml.xpath provided by the JDK. The library is based on the XPath
1.0 specification. Please refer to http://java.sun.com/javase/6/docs/api/javax/xml/xpath/package-summary.html
for detailed information on the Java XPath library.
All
functions follow the form:
xpath_*(xml_string, xpath_expression_string). The XPath expression
string is compiled and cached. It is reused if the expression in the
next input row matches the previous. Otherwise, it is recompiled. So,
the xml string is always parsed for every input row, but the xpath
expression is precompiled and reused for the vast majority of use
cases.
Backward axes are supported. For example:
SELECT xpath ('','/descendant::c/ancestor::b/@id') FROM t1 LIMIT 1 ; ["1","2"]
Each function returns a specific Hive type given the XPath expression:
-
xpath returns a Hive array of strings.
-
xpath_string returns a string.
-
xpath_boolean returns a boolean.
-
xpath_short returns a short integer.
-
xpath_int returns an integer.
-
xpath_long returns a long integer.
-
xpath_float returns a floating point number.
-
xpath_double,xpath_number returns a double-precision floating point number (xpath_number is an alias for xpath_double).
The
UDFs are schema agnostic - no XML validation is performed. However,
malformed xml (e.g., <a><b>1</b></aa>) will
result in a runtime exception being thrown.
Following are specifics on each xpath UDF variant.
xpath
The
xpath() function always returns a hive array of strings. If the
expression results in a non-text value (e.g., another xml node) the
function will return an empty array. There are 2 primary uses for this
function: to get a list of node text values or to get a list of
attribute values.
Examples:
Non-matching XPath expression:
SELECT xpath('<a><b>b1</b><b>b2</b></a>','a/*') FROM src LIMIT 1 ;
Returns: []
Get a list of node text values:
SELECT xpath('<a><b>b1</b><b>b2</b></a>','a/*/text()') FROM src LIMIT 1 ;
Returns: ["b1","b2"]
Get a list of values for attribute 'id':
SELECT xpath('b1b2','//@id') FROM src LIMIT 1 ;
Returns: ["foo","bar"]
Get a list of node texts for nodes where the 'class' attribute equals 'bb':
SELECT xpath ('b1b2b3c1c2', 'a/*[@class="bb"]/text()') FROM src LIMIT 1 ;
Returns: ["b1","c1"]
xpath_string
The xpath_string() function returns the text of the first matching node.
Get the text for node 'a/b':
SELECT xpath_string ('<a><b>bb</b><c>cc</c></a>', 'a/b') FROM src LIMIT 1 ;
Returns: bb
Get the text for node 'a'. Because 'a' has children nodes with text, the result is a composite of text from the children.
SELECT xpath_string ('<a><b>bb</b><c>cc</c></a>', 'a') FROM src LIMIT 1 ;
Returns: bbcc
Non-matching expression returns an empty string:
SELECT xpath_string ('<a><b>bb</b><c>cc</c></a>', 'a/d') FROM src LIMIT 1 ;
Gets the text of the first node that matches '//b':
SELECT xpath_string ('<a><b>b1</b><b>b2</b></a>', '//b') FROM src LIMIT 1 ;
Returns: b1
Gets the second matching node:
SELECT xpath_string ('<a><b>b1</b><b>b2</b></a>', 'a/b[2]') FROM src LIMIT 1 ;
Returns: b2
Gets the text from the first node that has an attribute 'id' with value 'b_2':
SELECT xpath_string ('b1b2', 'a/b[@id="b_2"]') FROM src LIMIT 1 ;
Returns: b2
xpath_boolean
Returns true if the XPath expression evaluates to true, or if a matching node is found.
Match Found:
SELECT xpath_boolean ('<a><b>b</b></a>', 'a/b') FROM src LIMIT 1 ;
Returns: true
No Match Found:
SELECT xpath_boolean ( '<a><b>b</b></a>', 'a/c') FROM src LIMIT 1 ;
Returns: false
Match found:
SELECT xpath_boolean ('<a><b>b</b></a>', 'a/b = "b"') FROM src LIMIT 1 ;
Returns: true
No match found:
SELECT xpath_boolean ('<a><b>10</b></a>', 'a/b < 10') FROM src LIMIT 1 ;
Returns: false
xpath_short, xpath_int, xpath_long
These functions return an integer numeric value, or the value zero
if no match is found, or a match is found but the value is non-numeric.
Mathematical operations are supported. In cases where the value
overflows the return type, then the maximum value for the type is
returned.
No match:
SELECT
xpath_int ('<a>b</a>', 'a = 10') FROM src LIMIT 1 ;
Returns: 0
Non-numeric match:
SELECT xpath_int ('<a>this is not a number</a>', 'a') FROM src LIMIT 1 ;
Returns: 0
SELECT xpath_int ('<a>this 2 is not a number</a>', 'a') FROM src LIMIT 1 ;
Returns: 0
Adding values:
SELECT xpath_int ( '1248', 'sum(a/*)') FROM src LIMIT 1 ;
Returns: 15
SELECT xpath_int ('1248', 'sum(a/b)') FROM src LIMIT 1 ;
Returns: 7
SELECT xpath_int ('1248', 'sum(a/b[@class="odd"])') FROM src LIMIT 1 ;
Returns: 5
Overflow:
SELECT xpath_int ('<a><b>2000000000</b><c>40000000000</c></a>', 'a/b * a/c') FROM src LIMIT 1 ;
Returns: 2147483647
xpath_float, xpath_double, xpath_number
Similar to xpath_short, xpath_int and xpath_long but with floating
point semantics. Non-matches result in zero. However, non-numeric
matches result in NaN. Note that xpath_number() is an alias for
xpath_double().
No match:
SELECT xpath_double ('<a>b</a>', 'a = 10') FROM src LIMIT 1 ;
Returns: 0.0
Non-numeric match:
SELECT xpath_double ('<a>this is not a number</a>', 'a') FROM src LIMIT 1 ;
Returns: NaN
A very large number:
SELECT xpath_double ('<a><b>2000000000</b><c>40000000000</c></a>', 'a/b * a/c')FROM src LIMIT 1 ;
Returns: 8.0E19
get_json_object
A limited version of JSONPath is supported:
- $ : Root object
- . : Child operator
- [] : Subscript operator for array
- * : Wildcard for []
Syntax not supported that's worth noticing:
- : Zero length string as key
- .. : Recursive descent
- @ : Current object/element
- () : Script expression
- ?() : Filter (script) expression.
- [,] : Union operator
- [start:end:step] : array slice operator
Example: src_json table is a single column (json), single row table:
/* json */
{"store":
{"fruit":[{"weight":8,"type":"apple"},{"weight":9,"type":"pear"}],
"bicycle":{"price":19.95,"color":"red"}
},
"email":"amy@only_for_json_udf_test.net",
"owner":"amy"
}
The fields of the json object can be extracted using these queries:
SELECT get_json_object(src_json.json, '$.owner') FROM src_json;
Returns: amy
SELECT get_json_object(src_json.json, '$.store.fruit[0]') FROM src_json;
Returns: {"weight":8,"type":"apple"}
SELECT get_json_object(src_json.json, '$.non_exist_key') FROM src_json;
Returns: NULL
reflect
It is possible to use pre-existing Java functions as UDFs, using reflect. For example:
SELECT reflect("java.lang.Math", "ceil", 3.142) FROM newtable LIMIT 1;
SELECT reflect("java.lang.Math", "max", 5 , 10) FROM newtable LIMIT 1;
In the above example, the first argument to reflect is the class
name, the second is the function name, and the third argument is a value
that is passed to the function. Note that any number of arguments can
be specified after the function name.
3. Built-in Aggregate Functions (UDAF)
The following are built-in aggregate functions are supported in Hive:
Return Type
|
Name(Signature)
|
Description
|
bigint
|
count(*), count(expr), count(DISTINCT expr[, expr...])
|
count(*) - Returns the total number of retrieved rows, including rows
containing NULL values; count(expr) - Returns the number of rows for
which the supplied expression is non-NULL; count(DISTINCT expr[, expr]) -
Returns the number of rows for which the supplied expression(s) are
unique and non-NULL.
|
double
|
sum(col), sum(DISTINCT col)
|
Returns the sum of the elements in the group or the sum of the distinct values of the column in the group
|
double
|
avg(col), avg(DISTINCT col)
|
Returns the average of the elements in the group or the average of the distinct values of the column in the group
|
double
|
min(col)
|
Returns the minimum of the column in the group
|
double
|
max(col)
|
Returns the maximum value of the column in the group
|
double
|
var_pop(col)
|
Returns the variance of a numeric column in the group
|
double
|
var_samp(col)
|
Returns the unbiased sample variance of a numeric column in the group
|
double
|
stddev_pop(col)
|
Returns the standard deviation of a numeric column in the group
|
double
|
stddev_samp(col)
|
Returns the unbiased sample standard deviation of a numeric column in the group
|
double
|
covar_pop(col1, col2)
|
Returns the population covariance of a pair of numeric columns in the group
|
double
|
covar_samp(col1, col2)
|
Returns the sample covariance of a pair of a numeric columns in the group
|
double
|
corr(col1, col2)
|
Returns the Pearson coefficient of correlation of a pair of a numeric columns in the group
|
double
|
percentile(col, p)
|
Returns the exact pth
percentile of an integer column in the group (does not work with floating point types). p must be between 0 and 1.
|
array<double>
|
percentile(col, array(p1
[, p2
]...))
|
Returns the exact percentiles p1
, p2
, ... of an integer column in the group (does not work with floating point types). pi
must be between 0 and 1.
|
double
|
percentile_approx(col, p [, B])
|
Returns an approximate pth
percentile of a numeric column
(including floating point types) in the group. The B parameter controls
approximation accuracy at the cost of memory. Higher values yield better
approximations, and the default is 10,000. When the number of distinct
values in col is smaller than B, this gives an exact percentile value.
|
array<double>
|
percentile_approx(col, array(p1
[, p2
]...) [, B])
|
Same as above, but accepts and returns an array of percentile values instead of a single one.
|
array<struct {'x','y'}>
|
histogram_numeric(col, b)
|
Computes a histogram of a numeric column in the group using b
non-uniformly spaced bins. The output is an array of size b of
double-valued (x,y) coordinates that represent the bin centers and
heights
|
4. Built-in Table-Generating Functions (UDTF)
Normal user-defined functions, such as concat(), take in a single
input row and output a single output row. In contrast, table-generating
functions transform a single input row to multiple output rows.
explode
explode() takes in an array as an input and outputs the elements of
the array as separate rows. UDTF's can be used in the SELECT expression
list and as a part of LATERAL VIEW.
An example use of explode() in the SELECT expression list is as follows:
Consider a table named myTable that has a single column (myCol) and two rows:
Array<int> myCol
|
[1,2,3]
|
[4,5,6]
|
Then running the query:
SELECT explode(myCol) AS myNewCol FROM myTable;
Will produce:
Using the syntax "SELECT udtf(col) AS colAlias..." has a few limitations:
- No other expressions are allowed in SELECT
- SELECT pageid, explode(adid_list) AS myCol... is not supported
- UDTF's can't be nested
- SELECT explode(explode(adid_list)) AS myCol... is not supported
- GROUP BY / CLUSTER BY / DISTRIBUTE BY / SORT BY is not supported
- SELECT explode(adid_list) AS myCol ... GROUP BY myCol is not supported
Please see Hive/LanguageManual/LateralView
for an alternative syntax that does not have these limitations.
The following are built-in table-generating functions are supported in Hive:
Return Type
|
Name(Signature)
|
Description
|
myType
|
explode(array<myType> a)
|
For each element in a, explode() generates a row containing that element
|
json_tuple
A new json_tuple() UDTF is introduced in hive 0.7. It takes a set of
names (keys) and return a tuple of values in one function. If you are
using get_json_object() and want to replace it with json_tuple, the only
changes is that your query will be using json_tuple() in lateral view
rather than multiple get_json_object() in the select clause.
For example,
SELECT a.timestamp, get_json_object(a.appevents, '$.eventid'), get_json_object(a.appenvets, '$.eventname') ROM log a;
should be changed to
SELECT a.timestamp, b.* FROM log a lateral VIEW json_tuple(a.appevent, 'eventid', 'eventname') b AS f1, f2;
转:http://www.karmasphere.com/Karmasphere-Analyst/hive-user-defined-functions.html
Note: sections of this reference material are derived from the Hive project from the Apache Foundation
, specifically from this wiki
.
|
相关推荐
Hive UDF分为三种主要类别:UDF(User Defined Scalar Functions),UDAF(User Defined Aggregate Functions),以及UDTF(User Defined Table Generating Functions)。UDF处理单行输入并返回单行输出,如字符串...
在Hive中,UDF(User Defined Functions)是用户自定义函数,允许开发人员扩展Hive的内置功能,以满足特定的数据处理需求。Hive UDF的实现通常涉及到编写Java代码,并将其打包成JAR(Java Archive)文件,然后在Hive...
Java是Hive的主要编程语言,用于编写Hive的UDF(User Defined Functions)和自定义处理逻辑。 本文将深入探讨Hive在实际应用中的案例,以及如何结合Java来增强Hive的功能。 1. **Hive数据仓库架构**: Hive构建在...
Dive into the world of SQL on Hadoop and get the most out of your Hive data ...Use tables, partitions, buckets, and user-defined functions Discover performance tuning tips and Hive best practices
Hive可以通过编写自定义函数(UDF, User Defined Function)、UDAF(UDAF, User Defined Aggregate Function)和UDTF(User Defined Table Generating Functions)扩展其功能,满足特定业务需求。 9. **Hive与HBase的...
- **用户自定义函数**:Hive支持UDF(User Defined Functions),用户可根据需求实现自己的函数。 3. **Hive的缺点** - **HQL表达能力有限**:无法表达迭代式算法,不适合复杂的数据挖掘任务。 - **效率较低**:...
6. **Hive UDF(User Defined Functions)**:允许用户自定义函数来扩展Hive的功能,包括UDF(单行函数)、UDAF(聚合函数)和UDTF(多行函数)。 7. **Hive Web Interface (WebHive)**:一个基于Web的界面,让用户...
8. **UDF(User Defined Functions)**:Hive允许用户自定义函数,扩展其内置功能,满足特定的数据处理需求。 9. **性能优化**:Hive支持多种优化策略,如EXPLAIN计划查看查询执行步骤,增加切分键以优化JOIN,选择...
4. **Hive UDFs (User Defined Functions)**:Hive提供了丰富的内置函数,同时允许用户自定义函数以扩展其功能。 5. **Hive CLI和Web UI**:CLI是命令行交互方式,适合开发者和管理员使用;Web UI则提供了图形化的...
Hive 的 User Defined Functions (UDFs) 是用户自定义函数,允许开发者扩展Hive的功能,以满足特定的数据处理需求。在这个场景中,我们关注的是如何使用UDF进行数据脱敏,特别是对敏感信息进行处理,例如手机号码、...
Use tables, partitions, buckets, and user-defined functions Discover performance tuning tips and Hive best practices Who This Book Is For Developers, companies, and professionals who deal with large ...
6. **UDF(User Defined Functions)**:Hive支持用户自定义函数,包括UDF(单行函数)、UDAF(多行聚合函数)和UDTF(多行转多行函数),用于扩展其功能。 7. **视图**:视图是Hive中的虚拟表,基于一个或多个基础...
此外,用户还可以编写自定义函数(UDF,User Defined Functions)以满足特定的计算需求。 Hive的组件架构包括多个关键部分: 1. 用户接口:主要有命令行接口(CLI)、客户端(Client)和Web用户界面(WUI)。CLI是...
Hive还提供了自定义函数(UDF, User Defined Functions)和窗口函数,扩展了查询功能。 6. **Hive性能优化**:Hive可以通过多种方式优化查询性能,比如使用分区过滤减少数据扫描量,使用物化视图预计算常用查询,...
此外,Hive 0.9.0还对UDF(User Defined Functions)进行了扩展,允许用户自定义更复杂的计算逻辑,增强了Hive的灵活性。这一特性对于满足不同业务需求和处理复杂数据类型至关重要。 总的来说,Hive 0.9.0是Hive...
Hive 支持多种高级特性,如 UDF(User Defined Functions)、UDAF(User Defined Aggregate Functions)和 UDTF(User Defined Table Generating Functions),可以自定义函数满足特定需求。 以上就是 Apache Hive ...
3. **扩展性**:Hive支持自定义函数,如UDF(User Defined Function)、UDAF(User Defined Aggregate Function)和UDTF(User Defined Table Generating Functions),极大地增强了其灵活性。 4. **批处理能力**:...
6. UDF(User Defined Functions)和UDAF(User Defined Aggregate Functions):Hive提供丰富的内置函数,同时用户可以自定义函数,扩展其功能。 7. Hive-on-MR和Hive-on-Spark:Hive 1.1.0支持在MapReduce和Spark...
Hive还支持用户自定义函数UDF(User-Defined Functions),允许用户扩展HiveQL的查询功能,如自定义关系操作符、代数操作符、逻辑操作符、复杂类型操作符、内建函数、数学函数、集合函数、类型转换、日期函数、条件...