从最一般的定义上说,一个求最小值的问题就是一个优化问题(也叫寻优问题,更文绉绉的叫法是规划——Programming),它同样由两部分组成,目标函数和约束条件,可以用下面的式子表示:
约束条件用函数c来表示,就是constrain的意思啦。你可以看出一共有p+q个约束条件,其中p个是不等式约束,q个等式约束。
关于这个式子可以这样来理解:式中的x是自变量,但不限定它的维数必须为1(视乎你解决的问题空间维数,对我们的文本分类来说,那可是成千上万啊)。要求f(x)在哪一点上取得最小值(反倒不太关心这个最小值到底是多少,关键是哪一点),但不是在整个空间里找,而是在约束条件所划定的一个有限的空间里找,这个有限的空间就是优化理论里所说的可行域。注意可行域中的每一个点都要求满足所有p+q个条件,而不是满足其中一条或几条就可以(切记,要满足每个约束),同时可行域边界上的点有一个额外好的特性,它们可以使不等式约束取得等号!而边界内的点不行。
关于可行域还有个概念不得不提,那就是凸集,凸集是指有这么一个点的集合,其中任取两个点连一条直线,这条线上的点仍然在这个集合内部,因此说“凸”是很形象的(一个反例是,二维平面上,一个月牙形的区域就不是凸集,你随便就可以找到两个点违反了刚才的规定)。
回头再来看我们线性分类器问题的描述,可以看出更多的东西。
在这个问题中,自变量就是w,而目标函数是w的二次函数,所有的约束条件都是w的线性函数(哎,千万不要把xi当成变量,它代表样本,是已知的),这种规划问题有个很有名气的称呼——二次规划(Quadratic Programming,QP),而且可以更进一步的说,由于它的可行域是一个凸集,因此它是一个凸二次规划。
一下子提了这么多术语,实在不是为了让大家以后能向别人炫耀学识的渊博,这其实是我们继续下去的一个重要前提,因为在动手求一个问题的解之前(好吧,我承认,是动计算机求……),我们必须先问自己:这个问题是不是有解?如果有解,是否能找到?
对于一般意义上的规划问题,两个问题的答案都是不一定,但凸二次规划让人喜欢的地方就在于,它有解(教科书里面为了严谨,常常加限定成分,说它有全局最优解,由于我们想找的本来就是全局最优的解,所以不加也罢),而且可以找到!(当然,依据你使用的算法不同,找到这个解的速度,行话叫收敛速度,会有所不同)
对比(式2)和(式1)还可以发现,我们的线性分类器问题只有不等式约束,因此形式上看似乎比一般意义上的规划问题要简单,但解起来却并非如此。
因为我们实际上并不知道该怎么解一个带约束的优化问题。如果你仔细回忆一下高等数学的知识,会记得我们可以轻松的解一个不带任何约束的优化问题(实际上就是当年背得烂熟的函数求极值嘛,求导再找0点呗,谁不会啊?笑),我们甚至还会解一个只带等式约束的优化问题,也是背得烂熟的,求条件极值,记得么,通过添加拉格朗日乘子,构造拉格朗日函数,来把这个问题转化为无约束的优化问题云云(如果你一时没想通,我提醒一下,构造出的拉格朗日函数就是转化之后的问题形式,它显然没有带任何条件)。
读者问:如果只带等式约束的问题可以转化为无约束的问题而得以求解,那么可不可以把带不等式约束的问题向只带等式约束的问题转化一下而得以求解呢?
聪明,可以,实际上我们也正是这么做的。下一节就来说说如何做这个转化,一旦转化完成,求解对任何学过高等数学的人来说,都是小菜一碟啦。
相关推荐
### SVM入门(五)线性分类器的求解——问题的描述Part2 #### 重要概念与背景 本文档旨在帮助读者理解支持向量机(SVM)中的线性分类器求解过程及其数学表述,特别关注于如何将线性分类器问题转化为优化问题,并讨论...
3. **第六讲:贝叶斯分类器及其改进** - 贝叶斯分类是概率推理的一种应用,本讲深入讲解了朴素贝叶斯分类器的原理和局限性,并探讨了多项式分布、拉普拉斯平滑等改进方法。 4. **第七讲:逻辑回归** - 逻辑回归是一...
外加热强制循环蒸发器装配图(CAD).rar
数控车床纵向进给系统设计.zip
j
爬虫 bangumi名称和评论数
基于SpringBoot的垃圾分类回收系统,系统包含两种角色:管理员、用户主要功能如下。 【用户功能】 首页:浏览垃圾分类回收系统信息。 个人中心:管理个人信息,查看历史记录和订单状态。 运输管理:查看运输信息,垃圾回收的时间和地点。 公告管理:阅读系统发布的相关通知和公告。 垃圾回收管理:查看垃圾回收的信息,回收类型和进度。 垃圾出库申请管理:提交和查看垃圾出库申请的状态。 【管理员功能】 首页:查看垃圾分类回收系统。 个人中心:管理个人信息。 管理员管理:审核和管理注册管理员用户的信息。 用户管理:审核和管理注册用户的信息。 运输管理:监管和管理系统中的运输信息。 公告管理:发布、编辑和删除系统的通知和公告。 垃圾回收管理:监管和管理垃圾回收的信息。 垃圾出库申请管理:审批和管理用户提交的垃圾出库申请。 基础数据管理:管理系统的基础数据,运输类型、公告类型和垃圾回收类型。 二、项目技术 编程语言:Java 数据库:MySQL 项目管理工具:Maven 前端技术:Vue 后端技术:SpringBoot 三、运行环境 操作系统:Windows、macOS都可以 JDK版本:JDK1.8以上都可以 开发工具:IDEA、Ecplise、Myecplise都可以 数据库: MySQL5.7以上都可以 Maven:任意版本都可以
内容概要:本文档是台湾大学计算机科学与信息工程系2021年秋季学期《算法设计与分析》课程的第一次作业(Homework#1)。作业包含四道编程题和三道手写题,旨在考察学生对算法设计和分析的理解与应用能力。编程题涉及汉诺塔、数组计算、矩形点对、糖果分配等问题;手写题涵盖渐近符号证明、递归方程求解、幽灵腿游戏优化、不公平的卢卡斯问题等。文档详细描述了每个问题的具体要求、输入输出格式、测试用例以及评分标准。此外,还提供了编程技巧和注意事项,如避免延迟提交、正确引用资料、处理大输入文件等。 适合人群:具备一定编程基础的本科生或研究生,特别是修读过或正在修读算法设计与分析相关课程的学生。 使用场景及目标:①帮助学生巩固课堂所学的算法理论知识;②通过实际编程练习提高解决复杂问题的能力;③为后续更深入的学习和研究打下坚实的基础。 其他说明:此作业强调团队合作和个人独立思考相结合的重要性,鼓励学生在讨论后用自己的语言表达解决方案,并注明参考资料。对于编程题,特别提醒学生注意输入文件可能较大,建议采取适当的优化措施以确保程序运行效率。
基于SpringBoot的铁路订票管理系统,系统包含两种角色:管理员、用户主要功能如下。 【用户功能】 首页:浏览铁路订票管理系统的主要信息。 火车信息:查看火车的相关信息,包括车次、出发地、目的地和票价等。 公告资讯:阅读系统发布的相关通知和资讯。 后台管理:进行系统首页、个人中心、车票预订管理、车票退票管理等操作。 个人中心:管理个人信息,查看订单历史记录等。 【管理员功能】 首页:查看铁路订票管理系统。 个人中心:修改密码、管理个人信息。 用户管理:审核和管理注册用户的信息。 火车类型管理:管理系统中的火车类型信息。 火车信息管理:监管和管理系统中的火车信息,添加、编辑、删除等。 车票预订管理:处理用户的车票预订请求。 车票退票管理:处理用户的车票退票请求。 系统管理:管理系统的基本设置,公告资讯、关于我们、系统简介和轮播图管理。 二、项目技术 编程语言:Java 数据库:MySQL 项目管理工具:Maven 前端技术:Vue 后端技术:SpringBoot 三、运行环境 操作系统:Windows、macOS都可以 JDK版本:JDK1.8以上都可以 开发工具:IDEA、Ecplise、Myecplise都可以 数据库: MySQL5.7以上都可以 Maven:任意版本都可以
塑料架注射模具设计.rar
基于json文件数据驱动的的接口测试框架
铁丝缠绕包装机设计-缠绕盘设计.rar
linux
圆柱体相贯线焊接专机工作台设计.rar
硬币分拣机设计.rar
内容概要:本文探讨了开发行业级机器学习和数据挖掘软件的经验与教训,指出当前研究界与工业界之间的脱节问题。作者分享了开发LIBSVM和LIBLINEAR的经验,强调了用户需求的重要性。大多数用户并非机器学习专家,期望简单易用的工具来获得良好结果。文章还详细介绍了支持向量机(SVM)的实际应用案例,包括数据预处理(如特征缩放)、参数选择等步骤,并提出了为初学者设计的简易流程。此外,作者讨论了在设计机器学习软件时应考虑的功能选择、选项数量、性能优化与数值稳定性等问题,强调了软件开发与实验代码的区别以及鼓励研究人员参与高质量软件开发的重要性。 适合人群:对机器学习软件开发感兴趣的科研人员、工程师及从业者,尤其是那些希望了解如何将学术研究成果转化为实际可用工具的人士。 使用场景及目标:①帮助非机器学习专家的用户更好地理解和使用机器学习方法;②指导开发者在设计机器学习软件时考虑用户需求、功能选择、性能优化等方面的问题;③促进学术界与工业界之间的合作,推动高质量机器学习软件的发展。 其他说明:本文不仅提供了具体的开发经验和技巧,还呼吁建立激励机制,鼓励更多研究人员投入到机器学习软件的开发中,以解决当前存在的研究与应用脱节的问题。
一天入门pandas代码
该资源为joblib-0.12.0-py2.py3-none-any.whl,欢迎下载使用哦!
内容概要:本文档《xtuner_requirements.txt》列出了用于支持特定项目(可能是机器学习或深度学习项目)运行所需的所有Python包及其版本。其中不仅包括常见的数据处理和科学计算库如numpy、pandas,还包括了与深度学习密切相关的库如torch、transformers等。值得注意的是,文档中还特别指定了NVIDIA CUDA相关组件的具体版本,确保了GPU加速环境的一致性和兼容性。此外,文档中也包含了从GitHub直接安装的xtuner库,明确了具体的提交哈希值,保证了代码来源的精确性。 适合人群:对机器学习、深度学习领域有一定了解并需要搭建相应开发环境的研发人员,尤其是那些希望复现特定实验结果或基于已有模型进行二次开发的研究者和技术爱好者。 使用场景及目标:①帮助开发者快速搭建完整的开发环境,确保所有依赖项正确无误;②为研究人员提供一个稳定的实验平台,以便于重复实验和验证结果;③作为项目协作的基础,确保团队成员之间的环境一致性,减少因环境差异带来的问题。 阅读建议:由于该文档主要为技术性依赖列表,在阅读时应重点关注所需安装的库及其版本号,特别是CUDA相关组件和自定义库(如xtuner)的安装方式。对于非技术人员而言,可能需要额外查阅相关资料来理解各库的作用。同时,在实际操作过程中,建议按照文档中的顺序逐一安装依赖,避免版本冲突等问题的发生。