在上篇文章里,我列举了一个简单的hive操作实例,创建了一张表test,并且向这张表加载了数据,这些操作和关系数据库操作类似,我们常把hive和关系数据库进行比较,也正是因为hive很多知识点和关系数据库类似。
关系数据库里有表(table),分区,hive里也有这些东西,这些东西在hive技术里称为hive的数据模型。今天本文介绍hive的数据类型,数据模型以及文件存储格式。这些知识大家可以类比关系数据库的相关知识。
首先我要讲讲hive的数据类型。
Hive支持两种数据类型,一类叫原子数据类型,一类叫复杂数据类型。
原子数据类型包括数值型、布尔型和字符串类型,具体如下表所示:
基本数据类型 |
||
类型 |
描述 |
示例 |
TINYINT |
1个字节(8位)有符号整数 |
1 |
SMALLINT |
2字节(16位)有符号整数 |
1 |
INT |
4字节(32位)有符号整数 |
1 |
BIGINT |
8字节(64位)有符号整数 |
1 |
FLOAT |
4字节(32位)单精度浮点数 |
1.0 |
DOUBLE |
8字节(64位)双精度浮点数 |
1.0 |
BOOLEAN |
true/false |
true |
STRING |
字符串 |
‘xia’,”xia” |
由上表我们看到hive不支持日期类型,在hive里日期都是用字符串来表示的,而常用的日期格式转化操作则是通过自定义函数进行操作。
hive是用java开发的,hive里的基本数据类型和java的基本数据类型也是一一对应的,除了string类型。有符号的整数类 型:TINYINT、SMALLINT、INT和BIGINT分别等价于java的byte、short、int和long原子类型,它们分别为1字节、 2字节、4字节和8字节有符号整数。Hive的浮点数据类型FLOAT和DOUBLE,对应于java的基本类型float和double类型。而 hive的BOOLEAN类型相当于java的基本数据类型boolean。
对于hive的String类型相当于数据库的varchar类型,该类型是一个可变的字符串,不过它不能声明其中最多能存储多少个字符,理论上它可以存储2GB的字符数。
Hive支持基本类型的转换,低字节的基本类型可以转化为高字节的类型,例如TINYINT、SMALLINT、INT可以转化为FLOAT, 而所有的整数类型、FLOAT以及STRING类型可以转化为DOUBLE类型,这些转化可以从java语言的类型转化考虑,因为hive就是用java 编写的。当然也支持高字节类型转化为低字节类型,这就需要使用hive的自定义函数CAST了。
复杂数据类型包括数组(ARRAY)、映射(MAP)和结构体(STRUCT),具体如下表所示:
复杂数据类型 |
||
类型 |
描述 |
示例 |
ARRAY |
一组有序字段。字段的类型必须相同 |
Array(1,2) |
MAP |
一组无序的键/值对。键的类型必须是原子的,值可以是任何类型,同一个映射的键的类型必须相同,值得类型也必须相同 |
Map(‘a’,1,’b’,2) |
STRUCT |
一组命名的字段。字段类型可以不同 |
Struct(‘a’,1,1,0) |
下面我们看看hive使用复杂数据类型的实例,建表:
Create table complex(col1 ARRAY< INT >,
Col2 MAP<STRING, INT >,
Col3 STRUCT<a:STRING,b : INT ,c: DOUBLE >);
|
查询语句:
Select col1[0],col2[‘b’],col3.c from complex;
|
接下来我们来看看hive的数据模型,hive的数据模型包括:database、table、partition和bucket。下面我将一一论述这四种数据模型。
1.Database:相当于关系数据库里的命名空间(namespace),它的作用是将用户和数据库的应用 隔离到不同的数据库或模式中,该模型在hive 0.6.0之后的版本支持,hive提供了create database dbname、use dbname以及drop database dbname这样的语句。
2.表(table):hive的表逻辑上由存储的数据和描述表格中的数据形式的相关元数据组成。表存储的数据 存放在分布式文件系统里,例如HDFS,元数据存储在关系数据库里,当我们创建一张hive的表,还没有为表加载数据的时候,该表在分布式文件系统,例如 hdfs上就是一个文件夹(文件目录)。Hive里的表友两种类型一种叫托管表,这种表的数据文件存储在hive的数据仓库里,一种叫外部表,这种表的数 据文件可以存放在hive数据仓库外部的分布式文件系统上,也可以放到hive数据仓库里(注意:hive的数据仓库也就是hdfs上的一个目录,这个目 录是hive数据文件存储的默认路径,它可以在hive的配置文件里进行配置,最终也会存放到元数据库里)。
下面是创建托管表的实例语句:
Create table tuoguan_tbl (flied string);
Load data local inpath ‘home/hadoop/test.txt’ into table tuoguan_tbl;
|
外部表创建的实例:
Create external table external_tbl (flied string)
Location ‘/home/hadoop/external_table’;
Load data local inpath ‘home/hadoop/test.txt’ into table external_tbl;
|
大家看到了创建外部表时候table之前要加关键字external,同时还要用location命令指定文件存储的路径,如果不使用locaction数据文件也会放置到hive的数据仓库里。
这两种表在使用的区别主drop命令上,drop是hive删除表的命令,托管表执行drop命令的时候,会删除元数据和存储的数据,而外部表 执行drop命令时候只删除元数据库里的数据,而不会删除存储的数据。另外我还要谈谈表的load命令,hive加载数据时候不会对元数据进行任何检查, 只是简单的移动文件的位置,如果源文件格式不正确,也只有在做查询操作时候才能发现,那个时候错误格式的字段会以NULL来显示。
3.分区(partition):hive里分区的概念是根据“分区列”的值对表的数据进行粗略划分的机制, 在hive存储上就体现在表的主目录(hive的表实际显示就是一个文件夹)下的一个子目录,这个文件夹的名字就是我们定义的分区列的名字,没有实际操作 经验的人可能会认为分区列是表的某个字段,其实不是这样,分区列不是表里的某个字段,而是独立的列,我们根据这个列存储表的里的数据文件。使用分区是为了 加快数据分区的查询速度而设计的,我们在查询某个具体分区列里的数据时候没必要进行全表扫描。下面我就举一个分区使用的实例:
创建分区:
Create table logs(ts bigint ,line string)
Partitioned by (dt string,country string);
|
加载数据:
Local data local inpath ‘/home/hadoop/par/file01.txt’ into table logs partition (dt=’2012-06-02’,country=’cn’);
|
在hive数据仓库里实际存储的路径如下所示:
/ user /hive/warehouse/logs/dt=2013-06-02/country=cn/file1.txt
/ user /hive/warehouse/logs/dt=2013-06-02/country=cn/file2.txt
/ user /hive/warehouse/logs/dt=2013-06-02/country=us/file3.txt
/ user /hive/warehouse/logs/dt=2013-06-02/country=us/file4.txt
|
我们看到在表logs的目录下有了两层子目录dt=2013-06-02和country=cn
查询操作:
Select ts,dt,line from logs where country=’cn’,
|
这个时候我们的查询操作只会扫描file1.txt和file2.txt文件。
4.桶(bucket):上面的table和partition都是目录级别的拆分数据,bucket则是对数据源数据文件本身来拆分数据。使用桶的表会将源数据文件按一定规律拆分成多个文件,要使用bucket,我们首先要打开hive对桶的控制,命令如下:
set hive.enforce.bucketing = true
|
下面这段文字是我引用博客园里风生水起的博文:
示例: 建临时表student_tmp,并导入数据: hive> desc student_tmp;
OK id int
age int
name string
stat_date string Time taken: 0.106 seconds
hive> select * from student_tmp;
OK 1 20 zxm 20120801 2 21 ljz 20120801 3 19 cds 20120801 4 18 mac 20120801 5 22 android 20120801 6 23 symbian 20120801 7 25 wp 20120801 Time taken: 0.123 seconds
建student表: hive> create table student(id INT , age INT , name STRING)
>partitioned by (stat_date STRING)
>clustered by (id) sorted by (age) into 2 bucket
>row format delimited fields terminated by ',' ;
设置环境变量: > set hive.enforce.bucketing = true ;
插入数据: > from student_tmp
> insert overwrite table student partition(stat_date= "20120802" )
> select id,age, name where stat_date= "20120801" sort by age;
查看文件目录: $ hadoop fs -ls / user /hive/warehouse/studentstat_date=20120802/
Found 2 items -rw-r --r-- 1 work supergroup 31 2012-07-31 19:52 /user/hive/warehouse/student/stat_date=20120802/000000_0
-rw-r --r-- 1 work supergroup 39 2012-07-31 19:52 /user/hive/warehouse/student/stat_date=20120802/000001_0
|
物理上,每个桶就是表(或分区)目录里的一个文件,桶文件是按指定字段值进行hash,然后除以桶的个数例如上面例子2,最后去结果余数,因为 整数的hash值就是整数本身,上面例子里,字段hash后的值还是字段本身,所以2的余数只有两个0和1,所以我们看到产生文件的后缀是*0_0 和*1_0,文件里存储对应计算出来的元数据。
Hive的桶,我个人认为没有特别的场景或者是特别的查询,我们可以没有必要使用,也就是不用开启hive的桶的配置。因为桶运用的场景有限,一个是做map连接的运算,我在后面的文章里会讲到,一个就是取样操作了,下面还是引用风生水起博文里的例子:
查看sampling数据: hive> select * from student tablesample(bucket 1 out of 2 on id);
Total MapReduce jobs = 1 Launching Job 1 out of 1
....... OK 4 18 mac 20120802 2 21 ljz 20120802 6 23 symbian 20120802 Time taken: 20.608 seconds
tablesample是抽样语句,语法:TABLESAMPLE(BUCKET x OUT OF y)
y必须是 table 总bucket数的倍数或者因子。hive根据y的大小,决定抽样的比例。例如, table 总共分了64份,当y=32时,抽取 (64/32=)2个bucket的数据,当y=128时,抽取(64/128=)1/2个bucket的数据。x表示从哪个bucket开始抽取。例 如, table 总bucket数为32,tablesample(bucket 3 out of 16),表示总共抽取(32/16=)2个bucket的数据,分别为第3个bucket和第(3+16=)19个bucket的数据。
|
相关推荐
常见的大数据存储方案有HDFS(Hadoop Distributed File System)用于分布式文件存储,HBase、Cassandra等NoSQL数据库用于结构化和半结构化数据,以及Hive、Pig等数据仓库工具用于数据查询和分析。选择合适的存储方式...
综上所述,大数据平台和HiveSQL相关的知识点包括了Hive工具的定义、特点、应用场景、基本和复杂数据类型、数据库的创建和删除、以及如何在Hive中创建和使用表等。这些知识点为掌握HiveSQL和处理大数据提供了坚实的...
2. **大数据的类型**:包括结构化数据(如关系型数据库中的数据)、半结构化数据(如XML文件)和非结构化数据(如文本、图片、音频和视频)。 3. **大数据技术栈**:包括Hadoop、Spark、Hive、HBase、Pig等。Hadoop...
在大数据领域,Hadoop是核心的开源框架,它提供了分布式文件系统(HDFS)和MapReduce编程模型,用于处理和存储海量数据。此外,还有其他重要组件,如Hive(基于Hadoop的数据仓库)、Pig(数据处理语言)、Spark...
大数据技术是现代信息技术领域的重要组成部分,它涉及到一系列用于处理海量数据的工具和框架。这个名为“大数据技术工具.xmind”的思维导图,是为初学者设计的,旨在引导他们逐步探索大数据的世界。以下是对其中涉及...
通过这些测试题目,我们可以看出大数据技术的广泛性和深度,涵盖从数据获取到分析的全过程,同时也突显了不同技术在处理不同类型和规模数据时的重要性。理解并掌握这些知识对于从事大数据相关工作的人来说至关重要。
因此,在设计Hive数据模型时,应尽可能减少UPDATE和DELETE操作,优先考虑INSERT和REPLACE INTO等方法来维护数据。 在实际应用中,Hive更新数据通常涉及以下步骤: 1. **创建一个临时表**:用于存放更新后的数据。 2...
本文档详细记录了一次从自建Hadoop集群到华为云MRS(Managed Service for Big Data)的大规模数据迁移项目,涉及到了Hive、Kudu和HBase这三种不同类型的数据存储系统。以下是针对这些系统的迁移策略、流程和解决方案...
- **数据模型**:Hive 支持的数据类型较简单,而传统数据库支持的数据类型更丰富。 - **事务处理**:Hive 不支持事务处理,无法回滚或恢复数据;而传统数据库支持事务处理。 - **实时性**:Hive 主要用于批处理...
半结构化数据是介于结构化数据和非结构化数据之间的一种数据类型,它没有固定的数据模型,但是却包含了比完全非结构化数据更多的数据组织信息。气象数据通常包含了大量的日志数据,这些数据通常以半结构化的形式存储...
4. **Hive数据类型**:Hive支持多种数据类型,包括基本类型(如STRING, INT, BOOLEAN)和复杂类型(如ARRAY, MAP, STRUCT)。 5. **HQL语法**:HQL支持SELECT, FROM, WHERE, GROUP BY, JOIN等SQL关键字,允许用户...
- 支持数据类型:包括基本类型(如INT、STRING)和复杂类型(如ARRAY、MAP、STRUCT)。 - 支持DDL(Data Definition Language):创建表、修改表结构、删除表等。 - 支持DML(Data Manipulation Language):插入、...
大数据技术原理及应用是指利用大数据处理架构来处理大量数据的技术和方法。本文将介绍大数据技术的原理和应用,并详细介绍Hadoop项目的架构和组件。 一、Hadoop项目架构 Hadoop项目是一个开源的分布式计算框架,...
三、Hive数据模型 Hive的数据模型基于关系型数据库,包括数据库、表、分区和桶。其中,表可以被划分为多个分区,以提高查询效率;桶则用于实现数据的排序和并行处理。 四、Hive操作 1. 创建表:用户可以使用CREATE ...
Hive的出现有效地解决了这一问题,它将复杂的MapReduce编程模型抽象成易于理解的SQL语法,极大地降低了数据分析的门槛。Hive从2008年成为Apache的开源项目,至今已发展至多个版本,如Hive 2.0.0。 Hive的体系结构中...
1. 大数据基础:首先,书中会讲解大数据的基础知识,包括数据类型、数据存储模型(如关系型数据库、NoSQL数据库)以及数据生命周期管理。还会讨论数据采集、预处理和清洗的必要性,这是数据分析的第一步。 2. ...
在这个过程中,我们需要考虑各种技术组件,以确保能够处理不同类型的海量数据,同时提供高效的数据处理、分析和检索能力。以下是对这些技术框架的详细分析: 1. **批处理引擎**:如MapReduce、Hive和Spark。...
这四个特性分别代表了大数据的规模、处理速度、数据类型多样性和潜在价值。 3. 大数据处理技术:处理大数据的关键在于如何存储、管理和分析这些数据。常见的技术包括分布式计算框架(如Hadoop MapReduce)、流式...