`
atomoptics
  • 浏览: 95257 次
  • 性别: Icon_minigender_1
  • 来自: 武汉
社区版块
存档分类
最新评论

[zz]用VC编写基于Windows的精确定时程序

阅读更多
<p>在工业生产控制系统中,有许多需要定时完成的操作,如定时显示当前时间,定时刷新屏幕上的进度条,上位 机定时向下位机发送命令和传送数据等。特别是在对控制性能要求较高的实时控制系统和数据采集系统中,就更需要精确定时操作。</p> <p> <br /> 众所周知,Windows 是基于消息机制的系统,任何事件的执行都是通过发送和接收消息来完成的。<br />这样就带来了一些问题,如一旦计算机的CPU被某个进程占用,或系统资源紧张时,发送到消息队列<br />中的消息就暂时被挂起,得不到实时处理。因此,不能简单地通过Windows消息引发一个对定时要求<br />严格的事件。另外,由于在Windows中已经封装了计算机底层硬件的访问,所以,要想通过直接利用<br />访问硬件来完成精确定时,也比较困难。所以在实际应用时,应针对具体定时精度的要求,采取相适 应的定时方法。</p> <p>  VC中提供了很多关于时间操作的函数,利用它们控制程序能够精确地完成定时和计时操作。本文详细介绍了 VC中基于Windows的精确定时的七种方式,如下图所示: </p> <p> <p align="left"><img>{<br>return bbimg(this)<br>}" style="WIDTH: 591px; HEIGHT: 406px" height="406" alt="" src="http://www.weste.net/Files/UpFiles/2004/11/25/2004112508563732197.gif" width="591" onload="<br>function onload(event) {<br>javascript:<br>    resizepic(this);<br>}<br>" border="0" /&gt;</p> <p> <p align="center">图一 图像描述</p> <p> <p align="left">   方式一:VC中的WM_TIMER消息映射能进行简单的时间控制。首先调用函数SetTimer()设置定时<br />间隔,如SetTimer(0,200,NULL)即为设置200ms的时间间隔。然后在应用程序中增加定时响应函数<br />OnTimer(),并在该函数中添加响应的处理语句,用来完成到达定时时间的操作。这种定时方法非常<br />简单,可以实现一定的定时功能,但其定时功能如同Sleep()函数的延时功能一样,精度非常低,最小<br />计时精度仅为30ms,CPU占用低,且定时器消息在多任务操作系统中的优先级很低,不能得到及时响<br />应,往往不能满足实时控制环境下的应用。只可以用来实现诸如位图的动态显示等对定时精度要求不高的情况。如示例工程中的Timer1。 </p> <p> <br /> 方式二:VC中使用sleep()函数实现延时,它的单位是ms,如延时2秒,用sleep(2000)。精度非常<br />低,最小计时精度仅为30ms,用sleep函数的不利处在于延时期间不能处理其他的消息,如果时间太<br />长,就好象死机一样,CPU占用率非常高,只能用于要求不高的延时程序中。如示例工程中的Timer2。</p> <p>  方式三:利用COleDateTime类和COleDateTimeSpan类结合WINDOWS的消息处理过程来实现秒级延时。如示例工程中的Timer3和Timer3_1。以下是实现2秒的延时代码: <br /><font size="3"><br /></font></p> <p> <p align="left"> <table width="90%" align="center" bgcolor="#e6e4dd" border="1"> <tbody> <tr> <td>COleDateTime start_time = COleDateTime::GetCurrentTime();<br />COleDateTimeSpan end_time= COleDateTime::GetCurrentTime()-start_time;<br />while(end_time.GetTotalSeconds(){ <br />MSG msg;<br />GetMessage(&amp;msg,NULL,0,0);<br />TranslateMessage(&amp;msg); <br />DispatchMessage(&amp;msg);</p> <p>//以上四行是实现在延时或定时期间能处理其他的消息,<br />       //虽然这样可以降低CPU的占有率,<br />//但降低了延时或定时精度,实际应用中可以去掉。<br />end_time = COleDateTime::GetCurrentTime()-start_time;<br />}//这样在延时的时候我们也能够处理其他的消息。 </td> </tr> </tbody> </table> </p> <p> <p align="left">  方式四:在精度要求较高的情况下,VC中可以利用GetTickCount()函数,该函数的返回值是<br />DWORD型,表示以ms为单位的计算机启动后经历的时间间隔。精度比WM_TIMER消息映射高,在较<br />短的定时中其计时误差为15ms,在较长的定时中其计时误差较低,如果定时时间太长,就好象死机一样,CPU占用率非常高,只能用于要求不高的延时程序<br />中。如示例工程中的Timer4和Timer4_1。下列代码可以实现50ms的精确定时:</p></p> <p> <p align="left"> <table width="90%" align="center" bgcolor="#e6e4dd" border="1"> <tbody> <tr> <td>DWORD dwStart = GetTickCount();<br />DWORD dwEnd = dwStart;<br />do<br />{<br /> dwEnd = GetTickCount()-dwStart;<br />}while(dwEnd </td> </tr> </tbody> </table> </p> <p> <p align="left">  为使GetTickCount()函数在延时或定时期间能处理其他的消息,可以把代码改为:</p></p> <p> <p align="left"> <table width="90%" align="center" bgcolor="#e6e4dd" border="1"> <tbody> <tr> <td>DWORD dwStart = GetTickCount();<br />DWORD dwEnd = dwStart;<br />do<br />{<br /> MSG msg;<br /> GetMessage(&amp;msg,NULL,0,0);<br /> TranslateMessage(&amp;msg); <br /> DispatchMessage(&amp;msg);<br /> dwEnd = GetTickCount()-dwStart;<br />}while(dwEnd </tr> </tbody> </table> </p> <p> <p align="left">  虽然这样可以降低CPU的占有率,并在延时或定时期间也能处理其他的消息,但降低了延时或定时精度。</p> <p> <br /> 方式五:与GetTickCount()函数类似的多媒体定时器函数DWORD timeGetTime(void),该函数定时精<br />度为ms级,返回从Windows启动开始经过的毫秒数。微软公司在其多媒体Windows中提供了精确定时器的底<br />层API持,利用多媒体定时器可以很精确地读出系统的当前时间,并且能在非常精确的时间间隔内完成一<br />个事件、函数或过程的调用。不同之处在于调用DWORD timeGetTime(void) 函数之前必须将 Winmm.lib 和<br />Mmsystem.h 添加到工程中,否则在编译时提示DWORD timeGetTime(void)函数未定义。由于使用该<br />函数是通过查询的方式进行定时控制的,所以,应该建立定时循环来进行定时事件的控制。如示例工程中的Timer5和Timer5_1。<br />方式六:使用多媒体定时器timeSetEvent()函数,该函数定时精度为ms级。利用该函数可以实现周期性的函数调用。如示例工程中的Timer6和Timer6_1。函数的原型如下: <font size="3"></p> <p></font></p> <table width="90%" align="center" bgcolor="#e6e4dd" border="1"> <tbody> <tr> <td>MMRESULT timeSetEvent( UINT uDelay, <br />UINT uResolution, <br />LPTIMECALLBACK lpTimeProc, <br />WORD dwUser, <br />UINT fuEvent )</td> </tr> </tbody> </table> <p>  该函数设置一个定时回调事件,此事件可以是一个一次性事件或周期性事件。事件一旦被激活,便调用指定的回调函数, 成功后返回事件的标识符代码,否则返回NULL。函数的参数说明如下:</p> <p>  uDelay:以毫秒指定事件的周期。<br />  Uresolution:以毫秒指定延时的精度,数值越小定时器事件分辨率越高。缺省值为1ms。<br />  LpTimeProc:指向一个回调函数。<br />  DwUser:存放用户提供的回调数据。<br />  FuEvent:指定定时器事件类型:<br />  TIME_ONESHOT:uDelay毫秒后只产生一次事件<br />  TIME_PERIODIC :每隔uDelay毫秒周期性地产生事件。 </p> <p> <br /> 具体应用时,可以通过调用timeSetEvent()函数,将需要周期性执行的任务定义在LpTimeProc回调函数<br />中(如:定时采样、控制等),从而完成所需处理的事件。需要注意的是,任务处理的时间不能大于周期间隔时间。另外,在定时器使用完毕后,<br />应及时调用timeKillEvent()将之释放。 </p> <p>  方式七:对于精确度要求更高的定时操作,则应该使用<br />QueryPerformanceFrequency()和<br />QueryPerformanceCounter()函数。这两个函数是VC提供的仅供Windows<br />95及其后续版本使用的精确时间函数,并要求计算机从硬件上支持精确定时器。如示例工程中的Timer7、Timer7_1、Timer7_2、<br />Timer7_3。</p> <p>  QueryPerformanceFrequency()函数和QueryPerformanceCounter()函数的原型如下:</p> <p> <table width="90%" align="center" bgcolor="#e6e4dd" border="1"> <tbody> <tr> <td>BOOL QueryPerformanceFrequency(LARGE_INTEGER *lpFrequency);<br />BOOL QueryPerformanceCounter(LARGE_INTEGER *lpCount);</td> </tr> </tbody> </table> <p>  数据类型ARGE_INTEGER既可以是一个8字节长的整型数,也可以是两个4字节长的整型数的联合结构, 其具体用法根据编译器是否支持64位而定。该类型的定义如下:</p> <p> <table width="90%" align="center" bgcolor="#e6e4dd" border="1"> <tbody> <tr> <td>typedef union _LARGE_INTEGER<br />{<br /> struct<br /> {<br />  DWORD LowPart ;// 4字节整型数<br />  LONG HighPart;// 4字节整型数<br /> };<br /> LONGLONG QuadPart ;// 8字节整型数</p> <p>}LARGE_INTEGER ;</td> </tr> </tbody> </table> <p> <br /> 在进行定时之前,先调用QueryPerformanceFrequency()函数获得机器内部定时器的时钟频率,<br />然后在需要严格定时的事件发生之前和发生之后分别调用QueryPerformanceCounter()函数,利用两次获得的计数之差及时钟频率,计算<br />出事件经 历的精确时间。下列代码实现1ms的精确定时:</p> <p> <table width="90%" align="center" bgcolor="#e6e4dd" border="1"> <tbody> <tr> <td>LARGE_INTEGER litmp; <br />LONGLONG QPart1,QPart2;<br />double dfMinus, dfFreq, dfTim; <br />QueryPerformanceFrequency(&amp;litmp);<br />dfFreq = (double)litmp.QuadPart;// 获得计数器的时钟频率<br />QueryPerformanceCounter(&amp;litmp);<br />QPart1 = litmp.QuadPart;// 获得初始值<br />do<br />{<br /> QueryPerformanceCounter(&amp;litmp);<br /> QPart2 = litmp.QuadPart;//获得中止值<br /> dfMinus = (double)(QPart2-QPart1);<br /> dfTim = dfMinus / dfFreq;// 获得对应的时间值,单位为秒<br />}while(dfTim</tr> </tbody> </table> <p>  其定时误差不超过1微秒,精度与CPU等机器配置有关。 下面的程序用来测试函数Sleep(100)的精确持续时间:</p> <p> <table width="90%" align="center" bgcolor="#e6e4dd" border="1"> <tbody> <tr> <td>LARGE_INTEGER litmp; <br />LONGLONG QPart1,QPart2;<br />double dfMinus, dfFreq, dfTim; <br />QueryPerformanceFrequency(&amp;litmp);<br />dfFreq = (double)litmp.QuadPart;// 获得计数器的时钟频率<br />QueryPerformanceCounter(&amp;litmp);<br />QPart1 = litmp.QuadPart;// 获得初始值<br />Sleep(100);<br />QueryPerformanceCounter(&amp;litmp);<br />QPart2 = litmp.QuadPart;//获得中止值<br />dfMinus = (double)(QPart2-QPart1);<br />dfTim = dfMinus / dfFreq;// 获得对应的时间值,单位为秒 </td> </tr> </tbody> </table> <p>  由于Sleep()函数自身的误差,上述程序每次执行的结果都会有微小误差。下列代码实现1微秒的精确定时:</p> <p> <table width="90%" align="center" bgcolor="#e6e4dd" border="1"> <tbody> <tr> <td>LARGE_INTEGER litmp; <br />LONGLONG QPart1,QPart2;<br />double dfMinus, dfFreq, dfTim; <br />QueryPerformanceFrequency(&amp;litmp);<br />dfFreq = (double)litmp.QuadPart;// 获得计数器的时钟频率<br />QueryPerformanceCounter(&amp;litmp);<br />QPart1 = litmp.QuadPart;// 获得初始值<br />do<br />{<br /> QueryPerformanceCounter(&amp;litmp);<br /> QPart2 = litmp.QuadPart;//获得中止值<br /> dfMinus = (double)(QPart2-QPart1);<br /> dfTim = dfMinus / dfFreq;// 获得对应的时间值,单位为秒<br />}while(dfTim</tr> </tbody> </table> <p>  其定时误差一般不超过0.5微秒,精度与CPU等机器配置有关。<br /> <p align="left"></p> <p></p>
分享到:
评论

相关推荐

    base zz zz zz zz

    base zz zz zz zz zz base zz zz zz zz zz base zz zz zz zz zz base zz zz zz zz zz

    通讯录管理系统课设使用c编写基于链表增查删改分组文本操作随程序实时同步

    这个程序使用c编写 注释翔实里面有链表 结构体 满足学生作业 也可自用 文本到链表相互实时输入输出 界面友好 有良好的人机操作界面

    基于PHP的zZ笨笨 php留言板程序.zip

    "zZ笨笨 php留言板程序"是一个基于PHP开发的简单留言系统。它为用户提供了一个方便的平台,让他们在网站上留下评论或建议。这个程序通常包括以下组件: 1. **前端展示**:用户界面通常是HTML和CSS构建的,通过...

    基于PHP的zZ笨笨php留言板程序源码.zip

    【标题】"基于PHP的zZ笨笨php留言板程序源码.zip" 提供的是一个使用PHP编程语言开发的留言板应用程序的源代码。PHP是一种广泛使用的开源脚本语言,尤其适用于Web开发,可以嵌入到HTML中,以创建动态交互式网页。这个...

    涂装线程序zz.rar

    西门子PLC程序设计通常使用Step 7、TIA Portal等软件,这些软件允许程序员用结构化文本、梯形图、功能块图等多种编程语言编写控制逻辑。beiyang3.mwp文件可能就是使用这些软件之一创建的,包含了涂装线的控制逻辑,...

    基于飞思卡尔的音乐定时闹钟

    基于飞思卡尔MC9S12XS128的音乐定时闹钟源代码,实测可用,课程设计的最终成品

    opencv-4.6.0-vc14-vc15.exe

    至于压缩包内的"opencv-4.6.0-vc14_vc15.exe"文件,它可能是一个自解压程序,运行后会自动将OpenCV库解压并安装到指定目录,同时可能也会进行一些必要的环境变量配置,以便于在Visual Studio中使用。安装完成后,...

    STM32F103单片机源码STM32-SysTick精确定时控制小灯流水

    STM32F103单片机源码STM32-SysTick定时器的使用(精确定时控制小灯流水)提取方式是百度网盘分享地址

    中医大夫助理信息系统 zz-doctor

    中医大夫助理信息系统“zz-doctor”是一款基于Android平台的应用程序,旨在为中医医生提供智能化、便捷化的诊疗辅助工具。通过深入剖析这款应用的源码,我们可以了解到Android开发的多个关键知识点,以及中医信息化...

    NTL库VC6.0测试工程

    这个“NTL库VC6.0测试工程”是为Visual C++ 6.0编译环境设计的,目的是帮助开发者了解和学习如何在Windows环境下集成和使用NTL库进行开发。下面我们将深入探讨NTL库的关键特性、使用方法以及与VC6.0的结合。 NTL库...

    OPENCV目标跟踪VS2008基于opencv编写运动目标检测与跟踪的程序

    ### OPENCV目标跟踪VS2008基于OpenCV编写运动目标检测与跟踪的程序 #### 背景介绍 随着计算机视觉技术的发展,运动目标检测与跟踪成为了研究热点之一。运动目标检测与跟踪技术广泛应用于智能监控、自动驾驶、人机...

    实用图形绘制系统

    复习并深入理解图形格式,数学原理及绘制技术;掌握VisualC++6.0图形类,熟悉相关绘图函数的使用;研究并掌握Windows画图附件的功能模块; 使用VC++编写仿Windows画图软件,实现线条、矩形等基本图形绘制。

    煅烧炉程序zz.rar

    标题中的“煅烧炉程序zz.rar”表明这是一个与煅烧炉控制相关的程序,而描述中提到的“西门子PLC程序”进一步确认了这个程序是使用西门子品牌的可编程逻辑控制器(PLC)来设计和实现的。西门子PLC在工业自动化领域...

    时间显示功能程序(汇编语言)

    在编程领域,尤其是在低级别操作或者对性能有极致要求的情况下,汇编语言常常被用于编写高效且精细控制的代码。本项目"时间显示功能程序"就是这样一个例子,它利用汇编语言来实现动态显示系统时间的功能。下面我们将...

    PAPARA(ZZ)I图像注释程序所需的所有文件.zip

    PAPARA(ZZ)I图像注释程序是一款专为图像处理和计算机视觉领域设计的工具,它提供了丰富的功能,便于用户对图像进行精确的标注和注释。在这款程序中,用户可以对图像进行各种类型的数据标记,如边界框、多边形、...

    zz.rar_visual c

    3. **编写源代码**:在源文件(如cpp文件)中,我们可以使用C++语法编写程序逻辑。例如,"zz.cpp"可能是我们的主要源文件,包含主函数main()和其他函数定义。 4. **链接资源**:"www.pudn.com.txt"如果包含资源信息...

    基于八位数码管的电子钟

    用c语言编写的八位数码管显示程序,初学单片机者必看。对理解动态扫描很有用的

    初学者VC画图程序,适用于大学毕业生

    在编程领域,尤其是在Windows平台下的软件开发,Visual C++(简称VC)是一个广泛使用的集成开发环境,它由Microsoft提供,支持C++语言进行应用程序的编写。这个“初学者VC画图程序”是一个针对大学毕业生设计的实践...

    CNAS《程序文件目录》2012新编具有较强可操作性的程序文件式样.doc

    31. **检测报告的编制和管理程序** (ZZ/CX31-10):规范报告的编写、审核和发放,确保报告内容准确无误。 32. **检测报告的意见和解释控制程序**:对报告中的意见和解释进行管理,确保其科学性和公正性。 此外,还...

    PAPARA(ZZ)I图像注释程序所需的所有文件.zip.zip

    PAPARA(ZZ)I图像注释程序是一个用于图像标注的工具,它为计算机视觉和机器学习项目提供了关键的支持。图像注释是训练人工智能模型,尤其是深度学习模型的基础步骤,因为这些模型需要大量的标注数据来学习识别图像...

Global site tag (gtag.js) - Google Analytics