基本数据类型
基本类型,或者叫做内置类型,是Java中不同于类(Class)的特殊类型。它们是我们编程中使用最频繁的类型。
Java是一种强类型语言,第一次申明变量必须说明数据类型,第一次变量赋值称为变量的初始化。
Java基本类型共有八种,基本类型可以分为三类:
字符类型char
布尔类型boolean
整数类型byte、short、int、long
浮点数类型float、double。
Java中的数值类型不存在无符号的,它们的取值范围是固定的,不会随着机器硬件环境或者操作系统的改变而改变。
实际上,Java中还存在另外一种基本类型void,它也有对应的包装类 java.lang.Void,不过我们无法直接对它们进行操作。
基本数据类型有什么好处
我们都知道在Java语言中,new一个对象是存储在堆里的,我们通过栈中的引用来使用这些对象;所以,对象本身来说是比较消耗资源的。
对于经常用到的类型,如int等,如果我们每次使用这种变量的时候都需要new一个Java对象的话,就会比较笨重。
所以,和C++一样,Java提供了基本数据类型,这种数据的变量不需要使用new创建,他们不会在堆上创建,而是直接在栈内存中存储,因此会更加高效。
整型的取值范围
Java中的整型主要包含byte、short、int和long这四种,表示的数字范围也是从小到大的,之所以表示范围不同主要和他们存储数据时所占的字节数有关。
先来个简答的科普,1字节=8位(bit)。java中的整型属于有符号数。
先来看计算中8bit可以表示的数字:
最小值:10000000 (-128)(-2^7)
较大值:01111111(127)(2^7-1)
整型的这几个类型中,
byte:byte用1个字节来存储,范围为-128(-2^7)到127(2^7-1),在变量初始化的时候,byte类型的默认值为0。
short:short用2个字节存储,范围为-32,768 (-2^15)到32,767 (2^15-1),在变量初始化的时候,short类型的默认值为0,一般情况下,因为Java本身转型的原因,可以直接写为0。
int:int用4个字节存储,范围为-2,147,483,648 (-2^31)到2,147,483,647 (2^31-1),在变量初始化的时候,int类型的默认值为0。
long:long用8个字节存储,范围为-9,223,372,036,854,775,808 (-2^63)到9,223,372,036, 854,775,807 (2^63-1),在变量初始化的时候,long类型的默认值为0L或0l,也可直接写为0。
超出范围怎么办
上面说过了,整型中,每个类型都有一定的表示范围,但是,在程序中有些计算会导致超出表示范围,即溢出。如以下代码:
int i = Integer.MAX_VALUE;
int j = Integer.MAX_VALUE;
int k = i + j;
System.out.println("i (" + i + ") + j (" + j + ") = k (" + k + ")");
输出结果:i (2147483647) + j (2147483647) = k (-2)
这就是发生了溢出,溢出的时候并不会抛异常,也没有任何提示。所以,在程序中,使用同类型的数据进行运算的时候,一定要注意数据溢出的问题。
包装类型
Java语言是一个面向对象的语言,但是Java中的基本数据类型却是不面向对象的,这在实际使用时存在很多的不便,为了解决这个不足,在设计类时为每个基本数据类型设计了一个对应的类进行代表,这样八个和基本数据类型对应的类统称为包装类(Wrapper Class)。
包装类均位于java.lang包,包装类和基本数据类型的对应关系如下表所示
在这八个类名中,除了Integer和Character类以后,其它六个类的类名和基本数据类型一致,只是类名的第一个字母大写即可。
为什么需要包装类
很多人会有疑问,既然Java中为了提高效率,提供了八种基本数据类型,为什么还要提供包装类呢?
这个问题,其实前面已经有了答案,因为Java是一种面向对象语言,很多地方都需要使用对象而不是基本数据类型。比如,在集合类中,我们是无法将int 、double等类型放进去的。因为集合的容器要求元素是Object类型。
为了让基本类型也具有对象的特征,就出现了包装类型,它相当于将基本类型“包装起来”,使得它具有了对象的性质,并且为其添加了属性和方法,丰富了基本类型的操作。
拆箱与装箱
那么,有了基本数据类型和包装类,肯定有些时候要在他们之间进行转换。比如把一个基本数据类型的int转换成一个包装类型的Integer对象。
我们认为包装类是对基本类型的包装,所以,把基本数据类型转换成包装类的过程就是打包装,英文对应于boxing,中文翻译为装箱。
反之,把包装类转换成基本数据类型的过程就是拆包装,英文对应于unboxing,中文翻译为拆箱。
在Java SE5之前,要进行装箱,可以通过以下代码:
Integer i = new Integer(10);
自动拆箱与自动装箱
在Java SE5中,为了减少开发人员的工作,Java提供了自动拆箱与自动装箱功能。
自动装箱: 就是将基本数据类型自动转换成对应的包装类。
自动拆箱:就是将包装类自动转换成对应的基本数据类型。
Integer i =10; //自动装箱
int b= i; //自动拆箱
Integer i=10 可以替代 Integer i = new Integer(10);,这就是因为Java帮我们提供了自动装箱的功能,不需要开发者手动去new一个Integer对象。
自动装箱与自动拆箱的实现原理
既然Java提供了自动拆装箱的能力,那么,我们就来看一下,到底是什么原理,Java是如何实现的自动拆装箱功能。
我们有以下自动拆装箱的代码:
public static void main(String[]args){
Integer integer=1; //装箱
int i=integer; //拆箱
}
对以上代码进行反编译后可以得到以下代码:
public static void main(String[]args){
Integer integer=Integer.valueOf(1);
int i=integer.intValue();
}
从上面反编译后的代码可以看出,int的自动装箱都是通过Integer.valueOf()方法来实现的,Integer的自动拆箱都是通过integer.intValue来实现的。如果读者感兴趣,可以试着将八种类型都反编译一遍 ,你会发现以下规律:
自动装箱都是通过包装类的valueOf()方法来实现的.自动拆箱都是通过包装类对象的xxxValue()来实现的。
哪些地方会自动拆装箱
我们了解过原理之后,在来看一下,什么情况下,Java会帮我们进行自动拆装箱。前面提到的变量的初始化和赋值的场景就不介绍了,那是最简单的也最容易理解的。
我们主要来看一下,那些可能被忽略的场景。
场景一、将基本数据类型放入集合类
我们知道,Java中的集合类只能接收对象类型,那么以下代码为什么会不报错呢?
List<Integer> li = new ArrayList<>();
for (int i = 1; i < 50; i ++){
li.add(i);
}
将上面代码进行反编译,可以得到以下代码:
List<Integer> li = new ArrayList<>();
for (int i = 1; i < 50; i += 2){
li.add(Integer.valueOf(i));
}
以上,我们可以得出结论,当我们把基本数据类型放入集合类中的时候,会进行自动装箱。
场景二、包装类型和基本类型的大小比较
有没有人想过,当我们对Integer对象与基本类型进行大小比较的时候,实际上比较的是什么内容呢?看以下代码:
Integer a=1;
System.out.println(a==1?"等于":"不等于");
Boolean bool=false;
System.out.println(bool?"真":"假");
对以上代码进行反编译,得到以下代码:
Integer a=1;
System.out.println(a.intValue()==1?"等于":"不等于");
Boolean bool=false;
System.out.println(bool.booleanValue?"真":"假");
可以看到,包装类与基本数据类型进行比较运算,是先将包装类进行拆箱成基本数据类型,然后进行比较的。
场景三、包装类型的运算
有没有人想过,当我们对Integer对象进行四则运算的时候,是如何进行的呢?看以下代码:
Integer i = 10;
Integer j = 20;
System.out.println(i+j);
反编译后代码如下:
Integer i = Integer.valueOf(10);
Integer j = Integer.valueOf(20);
System.out.println(i.intValue() + j.intValue());
我们发现,两个包装类型之间的运算,会被自动拆箱成基本类型进行。
场景四、三目运算符的使用
这是很多人不知道的一个场景,作者也是一次线上的血淋淋的Bug发生后才了解到的一种案例。看一个简单的三目运算符的代码:
boolean flag = true;
Integer i = 0;
int j = 1;
int k = flag ? i : j;
很多人不知道,其实在int k = flag ? i : j;这一行,会发生自动拆箱。反编译后代码如下:
boolean flag = true;
Integer i = Integer.valueOf(0);
int j = 1;
int k = flag ? i.intValue() : j;
这其实是三目运算符的语法规范:当第二,第三位操作数分别为基本类型和对象时,其中的对象就会拆箱为基本类型进行操作。
因为例子中,flag ? i : j;片段中,第二段的i是一个包装类型的对象,而第三段的j是一个基本类型,所以会对包装类进行自动拆箱。如果这个时候i的值为null,那么久会发生NPE。(自动拆箱导致空指针异常)
场景五、函数参数与返回值
这个比较容易理解,直接上代码了:
//自动拆箱
public int getNum1(Integer num) {
return num;
}
//自动装箱
public Integer getNum2(int num) {
return num;
}
自动拆装箱与缓存
Java SE的自动拆装箱还提供了一个和缓存有关的功能,我们先来看以下代码,猜测一下输出结果:
public static void main(String... strings) {
Integer integer1 = 3;
Integer integer2 = 3;
if (integer1 == integer2)
System.out.println("integer1 == integer2");
else
System.out.println("integer1 != integer2");
Integer integer3 = 300;
Integer integer4 = 300;
if (integer3 == integer4)
System.out.println("integer3 == integer4");
else
System.out.println("integer3 != integer4");
}
我们普遍认为上面的两个判断的结果都是false。虽然比较的值是相等的,但是由于比较的是对象,而对象的引用不一样,所以会认为两个if判断都是false的。
在Java中,==比较的是对象应用,而equals比较的是值。
所以,在这个例子中,不同的对象有不同的引用,所以在进行比较的时候都将返回false。奇怪的是,这里两个类似的if条件判断返回不同的布尔值。
上面这段代码真正的输出结果:
integer1 == integer2
integer3 != integer4
原因就和Integer中的缓存机制有关。在Java 5中,在Integer的操作上引入了一个新功能来节省内存和提高性能。整型对象通过使用相同的对象引用实现了缓存和重用。
适用于整数值区间-128 至 +127。
只适用于自动装箱。使用构造函数创建对象不适用。
具体的代码实现可以阅读Java中整型的缓存机制一文,这里不再阐述。
我们只需要知道,当需要进行自动装箱时,如果数字在-128至127之间时,会直接使用缓存中的对象,而不是重新创建一个对象。
其中的javadoc详细的说明了缓存支持-128到127之间的自动装箱过程。较大值127可以通过-XX:AutoBoxCacheMax=size修改。
实际上这个功能在Java 5中引入的时候,范围是固定的-128 至 +127。后来在Java 6中,可以通过java.lang.Integer.IntegerCache.high设置较大值。
这使我们可以根据应用程序的实际情况灵活地调整来提高性能。到底是什么原因选择这个-128到127范围呢?因为这个范围的数字是最被广泛使用的。 在程序中,第一次使用Integer的时候也需要一定的额外时间来初始化这个缓存。
在Boxing Conversion部分的Java语言规范(JLS)规定如下:
如果一个变量p的值是:
-128至127之间的整数(§3.10.1)
true 和 false的布尔值 (§3.10.3)
‘\u0000’至 ‘\u007f’之间的字符(§3.10.4)
范围内的时,将p包装成a和b两个对象时,可以直接使用a==b判断a和b的值是否相等。
自动拆装箱带来的问题
当然,自动拆装箱是一个很好的功能,大大节省了开发人员的精力,不再需要关心到底什么时候需要拆装箱。但是,他也会引入一些问题。
包装对象的数值比较,不能简单的使用==,虽然-128到127之间的数字可以,但是这个范围之外还是需要使用equals比较。
前面提到,有些场景会进行自动拆装箱,同时也说过,由于自动拆箱,如果包装类对象为null,那么自动拆箱时就有可能抛出NPE。
如果一个for循环中有大量拆装箱操作,会浪费很多资源。
from http://www.dataguru.cn/article-14105-1.html
相关推荐
Java集合详解1:一文读懂ArrayList,Vector与Stack使用方法和实现原理 Java集合详解2:Queue和LinkedList Java集合详解3:Iterator,fail-fast机制与比较器 Java集合详解4:HashMap和HashTable Java集合详解5:深入...
Java集合详解:一文读懂ArrayList,Vector与Stack使用方法和实现原理 Java集合详解:Queue和LinkedList Java集合详解:迭代器,快速失败机制与比较器 Java集合详解:HashMap和HashTable Java集合详解:深入理解...
ORTOOLS是Google开源的运筹优化工具,它的核心作用是将现实世界中的复杂问题转化为数学模型,并使用高效的求解算法来找出最优解或近似最优解。ORTOOLS覆盖了广泛的应用领域,包括但不限于企业资源规划、物流配送调度...
内容概要:本文详细介绍了基于FPGA的电机控制系统设计方案,重点探讨了Verilog和Nios2软核的协同工作。系统通过将底层驱动(如编码器处理、坐标变换、SVPWM生成等)交给Verilog实现,确保实时性和高效性;同时,复杂的算法(如Park变换、故障保护等)则由Nios2处理。文中展示了多个具体实现细节,如四倍频计数、定点数处理、查表法加速、软硬件交互协议等。此外,还讨论了性能优化方法,如过调制处理、五段式PWM波形生成以及故障保护机制。 适合人群:具备一定FPGA和嵌入式系统基础知识的研发人员,尤其是从事电机控制领域的工程师。 使用场景及目标:适用于希望深入了解FPGA在电机控制中的应用,掌握软硬件协同设计方法,提高系统实时性和效率的技术人员。目标是通过学习本方案,能够独立设计并实现高效的电机控制系统。 其他说明:本文不仅提供了详细的代码片段和技术细节,还分享了许多实践经验,如调试技巧、常见错误及其解决办法等。这对于实际工程项目非常有帮助。
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
计算机数控(CNC)装置.pdf
内容概要:本文详细介绍了使用西门子PLC和TiA博途软件构建冷热水恒压供水系统的具体方法和技术要点。主要内容涵盖变频器控制、模拟量输入输出处理、温度控制、流量计算控制及配方控制等方面。文中不仅提供了具体的编程实例,如LAD和SCL语言的应用,还分享了许多实用的经验和技巧,例如模拟量处理中的滤波方法、PID控制的优化策略、流量计算的高精度算法等。此外,针对实际应用中的常见问题,如信号干扰和参数整定,作者也给出了有效的解决方案。 适合人群:从事自动化控制系统开发的技术人员,尤其是对西门子PLC和TiA博途有一定了解并希望深入掌握冷热水恒压供水系统设计的专业人士。 使用场景及目标:适用于工业环境中需要精确控制水压、温度和流量的冷热水供应系统的设计与维护。主要目标是帮助工程师理解和实施基于西门子PLC和TiA博途的冷热水恒压供水系统,提高系统的稳定性和效率。 其他说明:文中提到的实际案例和编程代码片段对于初学者来说非常有价值,能够加速学习进程并提升实际操作能力。同时,关于硬件配置的选择建议也为项目规划提供了指导。
内容概要:本文详细介绍了基于PLC(可编程逻辑控制器)的自动蜂窝煤生产线中五条传送带的控制系统设计。主要内容涵盖IO分配、梯形图程序编写、接线图原理图绘制以及组态画面的设计。通过合理的IO分配,确保各个输入输出点正确连接;利用梯形图程序实现传送带的启动、停止及联动控制;接线图确保电气连接的安全性和可靠性;组态画面提供人机交互界面,便于操作员远程监控和操作。此外,还分享了一些实际调试中的经验和教训,如传感器安装位置、硬件接线注意事项等。 适合人群:从事自动化控制领域的工程师和技术人员,尤其是对PLC编程和工业自动化感兴趣的读者。 使用场景及目标:适用于需要设计和实施自动化生产线的企业和个人。目标是提高生产线的自动化程度,减少人工干预,提升生产效率和产品质量。 其他说明:文中提到的具体实例和代码片段有助于读者更好地理解和掌握相关技术和方法。同时,强调了硬件和软件相结合的重要性,提供了实用的调试技巧和经验总结。
内容概要:本文详细介绍了OpenScenario场景仿真的结构及其应用,特别是通过具体的XML代码片段解释了各个参数的作用和配置方法。文中提到的思维导图帮助理解复杂的参数关系,如Storyboard、Act、ManeuverGroup等层级结构,以及它们之间的相互作用。同时,文章提供了多个实用案例,如跟车急刹再加速、变道场景等,展示了如何利用这些参数创建逼真的驾驶场景。此外,还特别强调了一些常见的错误和解决方法,如条件触发器的误用、坐标系转换等问题。 适用人群:从事自动驾驶仿真研究的技术人员,尤其是对OpenScenario标准有一定了解并希望深入掌握其应用场景的人。 使用场景及目标:适用于需要精确控制交通参与者行为的自动驾驶仿真项目,旨在提高开发者对OpenScenario的理解和运用能力,减少开发过程中常见错误的发生。 其他说明:文章不仅提供了理论指导,还包括大量实践经验分享,如调试技巧、参数优化等,有助于快速解决问题并提升工作效率。
内容概要:本文详细介绍了30kW、1000rpm、线电压380V的自启动永磁同步电机的6极72槽设计方案及其性能优化过程。首先,通过RMxprt进行快速建模,设定基本参数如电机类型、额定功率、速度、电压、极数和槽数等。接着,深入探讨了定子冲片材料选择、转子结构设计、绕组配置以及磁密波形分析等方面的技术细节。文中特别强调了双层绕组设计、短距跨距选择、磁密波形优化、反电势波形验证等关键技术手段的应用。此外,还讨论了启动转矩、效率曲线、温升控制等方面的优化措施。最终,通过一系列仿真和实测数据分析,展示了该设计方案在提高效率、降低谐波失真、优化启动性能等方面的显著成果。 适合人群:从事电机设计、电磁仿真、电力电子领域的工程师和技术人员。 使用场景及目标:适用于希望深入了解永磁同步电机设计原理及优化方法的专业人士,旨在为类似项目的开发提供参考和借鉴。 其他说明:文章不仅提供了详细的参数设置和代码示例,还分享了许多实践经验,如材料选择、仿真技巧、故障排除等,有助于读者更好地理解和应用相关技术。
内容概要:本文详细介绍了如何使用S7-1200 PLC和WinCC搭建一个完整的燃油锅炉自动控制系统。首先明确了系统的IO分配,包括数字量输入输出和模拟量输入输出的具体连接方式。接着深入讲解了梯形图编程的关键逻辑,如鼓风机和燃油泵的联锁控制、温度PID调节等。对于接线部分,强调了强电弱电线缆分离以及使用屏蔽线的重要性。WinCC组态方面,则着重于创建直观的操作界面和有效的报警管理。此外,还分享了一些调试技巧和常见问题的解决方案。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是对PLC编程和SCADA系统有一定了解的人群。 使用场景及目标:适用于需要构建高效稳定的燃油锅炉控制系统的工业环境,旨在提高系统的可靠性和安全性,降低故障率并提升工作效率。 其他说明:文中提供了丰富的实践经验,包括具体的硬件选型、详细的程序代码片段以及实用的故障排查方法,有助于读者快速掌握相关技能并在实际工作中应用。
内容概要:本文详细探讨了逆变器输出纹波电流的来源及其对系统稳定性的影响,并提出了一种基于变开关频率PWM控制策略的解决方案。文中首先分析了纹波电流产生的原因,包括开关元件的导通关断、电感电流的非理想特性和电源电压波动。接着介绍了变开关频率PWM控制的基本原理,通过实时调整开关频率来优化纹波电流和开关损耗之间的平衡。随后,利用傅里叶变换建立了纹波电流预测模型,并通过Simulink仿真模型进行了验证。仿真结果显示,变开关频率控制能够显著减小纹波电流的幅值,提高系统的稳定性和效率。此外,文章还提供了具体的MATLAB/Simulink建模步骤以及一些优化建议,如提高开关频率上限、采用低纹波PWM算法和增加电感电流反馈。 适合人群:从事电力电子系统设计和优化的研究人员和技术人员,尤其是关注逆变器性能提升的专业人士。 使用场景及目标:适用于需要优化逆变器输出质量、提高系统稳定性和效率的应用场合。目标是通过变开关频率PWM控制策略,解决传统固定开关频率控制中存在的纹波电流大、效率低等问题。 其他说明:文章不仅提供了理论分析,还包括详细的仿真建模指导和优化建议,有助于读者更好地理解和应用相关技术。同时,文中提到的一些实用技巧和注意事项对于实际工程应用具有重要参考价值。
内容概要:本文详细介绍了平衡树的基本概念、发展历程、不同类型(如AVL树、红黑树、2-3树)的特点和操作原理。文中解释了平衡树如何通过自平衡机制克服普通二叉搜索树在极端情况下的性能瓶颈,确保高效的数据存储和检索。此外,还探讨了平衡树在数据库索引和搜索引擎等实际应用中的重要作用,并对其优缺点进行了全面分析。 适合人群:计算机科学专业学生、软件工程师、算法爱好者等对数据结构有兴趣的人群。 使用场景及目标:帮助读者理解平衡树的工作原理,掌握不同类型平衡树的特点和操作方法,提高在实际项目中选择和应用适当数据结构的能力。 其他说明:本文不仅涵盖了理论知识,还包括具体的应用案例和技术细节,旨在为读者提供全面的学习资料。
计算机三级网络技术 机试100题和答案.pdf
内容概要:本文详细介绍了将YOLOv5模型集成到LabVIEW环境中进行目标检测的方法。作者通过C++封装了一个基于ONNX Runtime的DLL,实现了YOLOv5模型的高效推理,并支持多模型并行处理。文中涵盖了从模型初始化、视频流处理、内存管理和模型热替换等多个方面的具体实现细节和技术要点。此外,还提供了性能测试数据以及实际应用场景的经验分享。 适合人群:熟悉LabVIEW编程,有一定C++基础,从事工业自动化或计算机视觉相关领域的工程师和技术人员。 使用场景及目标:适用于需要在LabVIEW环境下进行高效目标检测的应用场景,如工业质检、安防监控等。主要目标是提高目标检测的速度和准确性,降低开发难度,提升系统的灵活性和扩展性。 其他说明:文中提到的技术方案已在实际项目中得到验证,能够稳定运行于7x24小时的工作环境。GitHub上有完整的开源代码可供参考。
逻辑回归ex2-logistic-regression-ex2data1
内容概要:本文详细介绍了使用MATLAB/Simulink搭建单相高功率因数整流器仿真的全过程。作者通过单周期控制(OCC)方法,使电感电流平均值跟随电压波形,从而提高功率因数。文中涵盖了控制算法的设计、主电路参数的选择、波形采集与分析以及常见问题的解决方案。特别是在控制算法方面,通过动态调整占空比,确保系统的稳定性,并通过实验验证了THD低于5%,功率因数达到0.98以上的优异性能。 适合人群:电力电子工程师、科研人员、高校师生等对高功率因数整流器仿真感兴趣的读者。 使用场景及目标:适用于研究和开发高效电源转换设备的技术人员,旨在通过仿真手段优化整流器性能,降低谐波失真,提高功率因数。 其他说明:文章提供了详细的代码片段和调试经验,帮助读者更好地理解和应用单周期控制技术。同时提醒读者注意仿真与实际硬件之间的差异,强调理论计算与实际调试相结合的重要性。
计算机设备采购合同.pdf
计算机三级网络技术考试资料大全.pdf
内容概要:本文详细介绍了如何在Simulink中构建质子交换膜燃料电池(PEMFC)和固体氧化物燃料电池(SOFC)的仿真模型及其控制策略。主要内容涵盖各子系统的建模方法,如气体流道、温度、电压、膜水合度等模块的具体实现细节;探讨了几种先进的控制算法,包括模糊PID、自抗扰控制(ADRC)、RBF神经网络PID以及它们的应用场景和优势;并通过具体案例展示了不同控制器在处理复杂工况时的表现差异。此外,文中还分享了一些实用技巧,如避免模型参数调校中的常见错误、提高仿真的稳定性和准确性。 适合人群:从事燃料电池研究与开发的专业人士,尤其是具有一定Matlab/Simulink基础的研究人员和技术工程师。 使用场景及目标:帮助读者掌握燃料电池系统建模的基本流程和技术要点,理解各种控制算法的特点及其应用场景,从而能够独立完成相关项目的开发与优化工作。 其他说明:文章提供了大量MATLAB代码片段作为实例支持,便于读者理解和实践。同时强调了理论联系实际的重要性,在介绍每种技术时均结合具体的实验数据进行分析讨论。